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Unconventional magnons in collinear 
magnets dictated by spin space groups

Xiaobing Chen1,2, Yuntian Liu1, Pengfei Liu1, Yutong Yu1, Jun Ren1, Jiayu Li1, Ao Zhang1 & 
Qihang Liu1,2,3 ✉

Magnonic systems provide a fertile playground for bosonic topology1, for example, 
Dirac2–6 and Weyl7,8 magnons, leading to a variety of exotic phenomena such as charge-
free topologically protected boundary modes6,7, the magnon thermal Hall effect9 and 
the magnon spin Nernst effect10. However, their understanding has been hindered by 
the absence of fundamental symmetry descriptions of magnetic geometries and spin 
Hamiltonians primarily governed by isotropic Heisenberg interactions. The ensuing 
magnon dispersions enable gapless magnon band nodes that go beyond the scenario 
of representation theory of the magnetic space groups11,12, thus referred to as 
unconventional magnons. Here we developed spin space group13–17 theory to elucidate 
collinear magnetic configurations, classifying the 1,421 collinear spin space groups 
into 4 types, constructing their band representations and providing a comprehensive 
tabulation of unconventional magnons, such as duodecuple points, octuple nodal 
lines and charge-4 octuple points. On the basis of the MAGNDATA database18, we 
identified 498 collinear magnets with unconventional magnons, among which more 
than 200 magnon band structures were obtained by using first-principles calculations 
and linear spin wave theory. In addition, we evaluated the influence of the spin–orbit-
coupling-induced exchange interaction in these magnets and found that more than 
80 per cent are predominantly governed by the Heisenberg interactions, indicating 
that the spin space group serves as an ideal framework for describing magnon band 
nodes in most 3d, 4d and half-filled 4f collinear magnets.

Finding unconventional magnets that contain topological magnons 
is an area of high interest and demand, with potential applications in 
next-generation ultrafast spintronic devices and quantum computing. 
However, extending the success of topological band theory and mate-
rial diagnosis from electrons to magnons faces a significant challenge 
in the fundamental symmetry description of magnetic materials. The 
conventional framework for describing the symmetry of magnetic 
materials and designing magnon band nodes is based on magnetic 
space groups (MSGs)11,12. These groups completely lock the rotational 
operations in spin space and real space. Nevertheless, the magnon dis-
persions, especially in collinear magnets with small spin–orbit coupling 
(SOC) effects (for example, the Dzyaloshinskii–Moriya interaction19,20), 
predominantly depend on the isotropic Heisenberg exchange interac-
tion. As a result, even though the material candidates for experimental 
measurements are rare, the existing experimentally observed magnon 
spectra still cannot be entirely explained by MSGs. Examples include 
the observed Dirac and sextuple points in collinear antiferromagnet 
(AFM) Cu3TeO6 (refs. 3,4) and the two-fold nodal plane in collinear 
ferromagnet (FM) gadolinium21.

Spin space groups (SSGs), which were first proposed in the 1960s 
(yet overlooked until the recent development of AFM spintronics22–38), 
provide a framework that allows for decoupling of spatial and spin 

operations, and an examination of the symmetries associated with 
magnon dispersions39,40. In this work, we develop the SSG theory 
describing collinear magnetic configurations, which are typically 
dictated by the Heisenberg exchange interaction, and apply it to a 
comprehensive search of unconventional magnons in real materials. 
We categorize the 1,421 collinear SSGs into four types, corresponding 
to all the type I, III and IV MSGs but with more spatial-free spin sym-
metries and thus different band representations. By employing the 
representation theory, we not only capture the band degeneracies 
to reconcile the results of previous experiments but also tabulate all 
possible unconventional magnons, such as duodecuple (12-fold) nodal 
point, charge-4 octuple (8-fold) point, octuple nodal line, quadruple 
nodal plane and altermagnetic-splitting chiral magnons. We further 
conduct high-throughput ab initio calculations on the magnon band 
dispersions and representations for 348 computable collinear mag-
nets within the MAGNDATA database, which adopts experimentally 
confirmed magnetic structures. On the basis of an efficient and system-
atic diagnosis, we identify more than 200 unconventional magnonic 
materials by the calculated bilinear magnetic exchange coefficients and 
magnon dispersions. By comparing the results with and without SOC, 
we evaluate the magnitude of anisotropic interactions and thus the 
validity of unconventional magnons within the SSG scenario. Finally, we 
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provide the full array of data of collinear SSG theory, including general 
positions, spin Wyckoff positions, spin Brillouin zones, little co-groups 
of wavevectors, band representations and the magnon dispersions of 
calculated magnets in our homemade online program and database 
FINDSPINGROUP (https://findspingroup.com/).

Collinear SSGs
Beginning with 90 spin point groups describing collinear magnetic 
orders14, 1,421 SSGs for collinear magnets can be constructed by 
group extension15. A typical SSG operation is written as O O{ }s r , where 
Os and Or denote the operation in spin space and real space, respec-
tively. In general, SSGs can be expressed as GS = GNSS × GSO, where GSO 
stands for the spin-only group that contains only spin operations 
O E{ }s  (E is the identity operation), and GNSS stands for the non-trivial 

SSG that contains no pure spin operations41. For collinear magnetic 
structures, G Z SO= (2)K

SO 2 ⋉ , where SO U ϕ ϕ(2) = { ( ), ∈ [0, 2π)}z  con-
tains full spin rotations U with the rotation angle ϕ along the spin 
axis z, and nZ E TU K= { , (π) = }K

2  contains the product of the time rever-
sal T and a two-fold spin rotation about any axis n perpendicular to  
the z axis14.

For collinear FM materials with only one type of magnetic sublattice, 
the non-trivial SSG is given by G E G= { }NSS , where G is the space group 
(230 in total). These SSGs are also sufficient to describe the symmetry 
of a collinear ferrimagnet (FIM) that contains multiple spin sublattices 
but without any symmetry connecting them. On the other hand,  
the definition of AFM used here, followed by Louis Néel, refers to a 
magnetic-ordered state with zero net magnetic moment where the 

magnetic sublattices with opposite spins are crystallographic equiva-
lent42. For a collinear AFM with two sublattices carrying opposite spins, 
GNSS is obtained by group extension E G U AG{ } + { (π) }↑ ↑n , where the 
sublattice space group G↑ contains all spatial symmetries that do not 
exchange atoms from different sublattices; nU A{ (π) } is the symmetry 
operation that combines the exchange of the two sublattices (A) and 
spin reversal (Un(π)).

In analogy with the construction of type I, III and IV MSGs, 1,421 
collinear SSGs are constructed, including 230 type I SSGs describing 
collinear FMs and FIMs, and 1,191 SSGs describing collinear AFMs. 
Compared with 674 type III MSGs, we further categorize collinear 
SSGs using nU A{ (π) }, including 252 type II SSGs with A = P (P repre-
sents the space inversion), and 422 type III SSGs with A = Cn, PCn 
(n = 2, 4) (Cn, PCn stand for n-fold symmorphic or non-symmorphic 
space rotations and rotoinversions, respectively). Such classification 
naturally leads to the separation of conventional PT-symmetric AFMs 
with two-fold spin-degenerate bands (type II SSGs) and the recently 
emerged altermagnets27 with AFM-induced spin splitting23,24 (type III 
SSGs). Besides, there are 517 type IV SSGs describing AFMs with A = τ 
(τ represents the fractional lattice translation). All collinear SSGs are 
tabulated in Supplementary Information section 2 and are summa-
rized in Fig. 1a. Although the 1,421 collinear SSGs show one-to-one 
correspondence with the 1,421 MSGs, they manifest more spin sym-
metries, including spin SO(2), TUn(π) and U A{ (π) }n , which are crucial 
for more band degeneracies beyond the regime of MSGs (see a detailed 
comparison in Supplementary Information section 1). We list the SSGs 
of all collinear magnets in MAGNDATA in our online database FIND-
SPINGROUP.
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Fig. 1 | Classification of 1,421 SSGs for collinear magnets. a, For a collinear FM, 
the SSG G E G= { }NSS  can be constructed from the space group G. For a collinear 
AFM, the sublattice space group G↑, the space group G of the magnetic cell and 
the space operation A (see inset of magnetic structure) that connects different 
magnetic sublattices are necessary for constructing G E G U AG= { } + { (π) }NSS ↑ ↑n . 
Collinear AFM SSGs can be further classified into three categories based on 

the space operation A. The number in the parentheses represents the number  
of the corresponding SSGs. The last row lists the material candidates for each 
category. τ, fractional lattice translation; P, spatial inversion; Cn, spatial 
rotations. b, Statistics of the collinear SSGs characterizing four types of 
collinear magnet. c, Statistics of the five types of collinear magnet in the 
MAGNDATA database.
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Workflow
We briefly discuss the procedure to obtain all types of unconventional 
magnon and their realization in collinear magnets documented in 
MAGNDATA (Fig. 2a). For 1,421 collinear SSGs, we establish the data-
base for general positions, spin Wyckoff positions, spin site groups, 
spin Brillouin zones, little co-groups of wavevectors k and magnon 
band representations (Methods). For material realization, we adopt the 
MAGNDATA database, which contains more than 2,000 commensurate 
magnetic structures determined by neutron scattering measurements. 
By spin group symmetry identification, we filter out 1,223 collinear 
magnets (Fig. 1b) with their SSGs and spin Wyckoff positions of mag-
netic ions. According to the corresponding band representations, we 
identify 498 materials hosting unconventional magnons, including 5 
FMs, 17 FIMs and 476 AFMs, which can be further classified into 56 PT 
AFMs, 203 altermagnets and 217 Uτ AFMs.

After excluding magnetic structures with fractional occupancy or 
more than 80 atoms in the spin primitive cell, we perform density func-
tional theory and Wannier projection calculations on 348 materials. 
After filtering out the cases that fail to converge and Wannierize, we 
obtain the bilinear magnetic exchange coefficients of 223 collinear 
magnets by using the TB2J code. The magnon band structures of  
the Heisenberg spin Hamiltonians are calculated by the linear spin 
wave theory. Specifically, Holstein–Primakoff transformation 
S S a S S a S S a a≈ 2 , ≈ 2 , = −z+ − † †  connects the magnon creation a† 
(annihilation a) operator with the electron annihilation S− (creation 
S+) operator43. Finally, we obtain the unconventional magnons and 
corresponding irreducible co-representations (co-irreps) in 203 col-
linear magnets, whereas the magnon Hamiltonians of the other 20 
systems are negative-definite, leading to the magnetic instability. More 
computational details can be found in Methods.

Catalogue of unconventional magnons
For collinear magnets, the spin-only group ⋉Z SO(2)K

2  leads to three 
main types of symmetry resulting in extra degeneracies of magnon 
bands. (1) Unitary spin space symmetry (USS): the combination of SO(2) 
with unitary nU A{ (π) } symmetry pairs two conjugated one-dimensional 
irreducible representations (irreps) for S± into a two-dimensional irrep 
in spin space. (2) Antiunitary spin space symmetry (ASS): combination 
of SO(2) with antiunitary T||A{ } pairs two conjugated one-dimensional 
irreps for S± into a two-dimensional co-irrep in spin space. (3) Antiuni-
tary real-space symmetry (ARS): antiunitary TU E{ (π) }n  symmetry  
pairs two conjugated irreps of real-space operations (Methods).

We next note several features of the magnon band degeneracies 
based on the co-irreps of collinear SSG. (1) Despite the absence of T, 
type I SSGs have the same band degeneracy and topology as the cor-
responding space group G combining T owing to nTU E{ (π) }  symme-
try. This is also applicable in searching electron orbital multiplets of a 
collinear FM44. (2) For collinear SSGs describing an AFM, magnon band 
structures are doubly degenerate throughout the Brillouin zone for 
all type II and type IV SSGs, because of ASS T||P{ } and USS U τ{ (π) }n  at 
an arbitrary k point, respectively. (3) The topological charges at nodal 
points formed by two opposite-spin branches are opposite for type II 
SSGs, but identical for type IV SSGs. (4) Magnon band structures with 
type III SSGs show AFM-induced chirality splitting, the magnonic ana-
logue of spin splitting in altermagnets38. Therefore, the unconventional 
magnons can be classified into five categories (Fig. 2b). The correspond-
ence between co-irreps and unconventional magnons in all collinear 
SSGs is provided in Supplementary Information section 3.

Figure 2b summarizes the statistics of material candidates hosting 
the five categories of unconventional magnons. Notably, about 40% of 
the collinear magnets have at least one type of unconventional magnon. 
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Fig. 2 | Workflow for the construction of the unconventional magnon 
database. a, First, 1,223 collinear magnets were identified from the MAGNDATA 
database. Second, after the identification of the SSG, co-irrep screenings were 
performed to obtain the material candidates hosting unconventional magnons. 
Third, high-throughput calculations were performed to obtain all bilinear 
exchange interactions. Finally, an unconventional-magnon database with 203 
magnon band structures and identified band representations was constructed. 

b, Statistics of five types of unconventional magnon in the collinear magnets 
from the MAGNDATA database, including: (1) chiral quasiparticles (C ≠ 0), 
including C-4 octuple, C-4 sextuple, C-8 Dirac and C-2 triple magnons;  
(2) topological charge-neutral (C = 0) quasiparticles, including duodecuple, 
octuple, sextuple and triple magnons; (3) octuple nodal line magnons;  
(4) quadruple nodal plane magnons; and (5) altermagnetic-splitting chiral 
magnons.
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The two major types are quadruple nodal plane magnon (22.08%) and 
altermagnetic chiral magnon (16.60%). This is consistent with that the 
proportion of altermagnets and Uτ AFMs is relatively large in collinear 
magnets with unconventional magnons in Fig. 1c. In Table 1, we list some 
representative materials with their SSGs, co-irreps and magnon node 
topology, and the diagnosis results of all 498 materials with unconven-
tional magnon are provided in Supplementary Information section 4.

Representative materials
We present calculated materials manifesting various unconventional 
magnons in each type of SSG, including their degeneracy and node 
topology. The calculated magnon band structures of all the 203 can-
didates are provided in Supplementary Information section 5. We begin 
with sextuple and triple points in type I collinear SSG I d4 3 1m1 1 1 ∞  in FM 
Gd4Sb3 (Fig. 3a–c). Since collinear magnets cannot have cubic MSGs, 
any triple or sextuple magnons are thus absent within the regime of 
MSG. However, we find triple magnons at the Γ point, indicating that 
the SSG maintains the cubic nature of the lattice. In addition, owing to 
the ARS ∣∣ ∣nTU C τ{ (π) }z y2 /2 , two triple magnons stick together forming 
a sextuple magnon at the boundary of the Brillouin zone (H point). This 
is a typical case where the decoupled spin and space rotations in type 
I SSGs provide a more fertile platform for quasiparticles than MSGs. 
We note that similar ARS was found to protect the two-fold nodal plane 
in collinear FM gadolinium21.

Compared with the collinear FM, spin space can lead to additional 
degeneracy by USS and/or ASS in a collinear AFM. The presented 

example is PT AFM Cu3TeO6 (Fig. 3d–f), whose magnon dispersion were 
measured by inelastic neutron scattering experiments3,4. Specifically, 
the magnon bands are doubly degenerate throughout the whole 
Brillouin zone, with several sextuple and Dirac magnons identified at 
the Γ, P and H points. These features are all beyond the regime of MSG, 
where the corresponding MSG R3′ predicts a non-degenerate band at 
an arbitrary k point and at most two-fold band crossings at any high-
symmetry points (Supplementary Information section 7.3.2). In sharp 
contrast, these band degeneracies are perfectly described using  
co-irreps of the type II cubic SSG I a 3 1m1 1 ∞ . In particular, the little group 
m 3 1m1 1 ∞  allows sextuple magnons at the Γ and H points with a C2-2 

monopole charge (Methods) and thus the hidden magnon thermal Hall 
effect (Table 1). We further note that the highest dimension of the 
symmetry-protected magnon bands in type II SSGs is 12. A representa-
tive example is the R point in experimentally synthesized Pr5Mo3O16, 
where a collinear AFM order is implemented (Supplementary Informa-
tion section 7.3.5).

Another interesting case is the octuple magnon, which is found at 
the A point in type III SSG P c6 2 1m1 1 1 ∞  in FeS (Fig. 3g–i). Such an octuple 
magnon is also the synergistic effect of the ASS ( U m τ{ (π) }z z /2n ∣∣ ∣ ) and 
ARS ( T||C{ |0}x2 ). Moreover, the bands off the high-symmetry point are 
non-degenerate, leading to AFM-induced magnon chirality splitting 
along, for example, the Γ–A and A–K directions. We expect that magnon 
chirality splitting in collinear AFM can lead to the appearance of non-
zero Berry curvature, magnon orbital angular momentum and the 
magnon nonlinear thermal Hall effect in the absence of SOC, which 
will further expand the scope of the relevant field of spintronics45–47. 
We list all the 203 diagnosed altermagnets and the momentum position 
of magnon chirality splitting (also electronic spin splitting) from MAGN-
DATA in Supplementary Information section 4.6 and our online data-
base FINDSPINGROUP.

The magnon quasiparticles carry various topological charges,  
some of which are absent in all encyclopaedias of MSGs48–50 but  
protected by SSG symmetries. One striking case is the charge-4 (C-4) 
octuple magnons (Fig. 3j–l) in collinear Fe0.35NbS2 with a type IV  
SSG P 2 2 2 1a

m
1

1
1

1
1

1 ∞ . Owing to the U E τ{ (π) }n  and ARS T||C τ{ | }z x2 /2  of the 
 little group of kz = π plane, the magnon bands form quadruple Z–U–
R–T nodal plane and octuple quasiparticle at the R point. Different 
from type II SSGs, the sign of Berry curvature from the two pairs of 
four-fold degenerate bands connected by U E τ{ (π) }n  are identical for 
type IV SSGs, resulting in C-4 octuple magnons as the superposition 
of two C-2 Dirac points at R. Furthermore, three perpendicular k planes 
(kx, ky, kz = π) intersecting at the R point form a quadruple nodal plane 
network (Supplementary Information section 7.3.4). We predict cases 
of magnon band topology such as C-4 sextuple and C-8 Dirac magnons 
as summarized in Supplementary Information section 4.

SOC effects
To evaluate the applicability of collinear SSGs in diagnosing uncon-
ventional magnons, we fully consider SOC effects by calculating the 
bilinear magnetic exchange interactions, including antisymmetric 
Dzyaloshinskii–Moriya interaction (D), exchange anisotropy ( Jani) 
and off-diagonal symmetric anisotropy (Γ ), and compare them with 
the isotropic Heisenberg exchange interaction ( J) in 223 candidate 
materials. Notably, single-ion anisotropy is excluded in our analysis 
because in collinear magnets it does not affect the symmetry of the 
magnon Hamiltonian, the band representations or the nodal topology 
(Supplementary Information section 7).

Table 2 shows that in 82% of the calculated collinear magnets, the 
Dzyaloshinskii–Moriya interaction, exchange anisotropy (for example, 
Kitaev interaction) and off-diagonal symmetric anisotropy are at least 
an order of magnitude smaller than the Heisenberg interaction, indicat-
ing the validity of SSG for these systems. Specifically, 87% of the 3d and 
4d magnets are dominated by Heisenberg interactions, whereas the 

Table 1 | Summary of unconventional magnons identified in 
prototypical candidate materials

SSG k point Band 
representation  
at k

Type Material

220.220.1.1 
(I d4 3 1m1 1 1 ∞ )

H (1, 1, 1) H H (6)S S
4 5 SP Gd4Sb3 (FM)

Γ (0, 0, 0) Γ (3)S
4 ,Γ (3)S

5 TP

227.227.1.1 
( ∞F d m3 1m1 1 1 )

Γ (0, 0, 0) Γ (3)S
5

,+ TP Lu2V2O7
a (FM)

212.212.1.1 
( ∞P 4 3 2 1m

3
1 1 1 )

Γ (0, 0, 0) Γ (3)S
4 ,Γ (3)S

5 C-2 TP LiFe5O8 (FIM)

218.222.1.1 
(P n n3 1m1 1 1 ∞ )

R (1/2, 1/2, 1/2) R R (12)S S
4 5 DCP Pr5Mo3O16

b  
(PT AFM)

199.206.1.1 
( ∞I a 3 1m1 1 )

Γ (0, 0, 0) Γ (6)S
4 C2-2 SP Cu3TeO6

a  
(PT AFM)

H (1, 1, 1) H (6)S
4

159.190.1.1 
( ∞P c6 2 1m1 1 1 )

A (0, 0, 1/2) A A (8)S S
3 3 OP FeS 

(altermagnet)

62.63.2.1 
( ∞P n m a 1B

m1 1 1 )
Q (1/2, 1/2, w) Q Q (8)S S

1 1 ONL Mn5Si3  
(Uτ AFM)

W (u, v, 1/2) W W (4)S S
1 2 QNPL

19.18.2.1 
( ∞P 2 2 2 1c

m
1

1
1

1
1

1 )
R (1/2, 1/2, 1/2) R R (8)S S

1 1 C-4 OP Fe0.35NbS2  
(Uτ AFM)

L (1/2, v, w) L L (4)S S
1 1 QNPL net

N (u, 1/2, w) N N (4)S S
1 1

W (u, v, 1/2) W W (4)S S
1 1

195.197.2.1 
(P 2 3 1I

m1 1 ∞ )
Γ (0,0,0) Γ Γ (4)S S

2 3 C-8 DP LaMn3Cr4O12  
(Uτ AFM)

Γ (0,0,0) Γ (6)S
4 C-4 SP

R (1/2,1/2,1/2) R (6)S
4 C-4 SP

aThe nodal feature has been experimentally observed. bThe material is synthesized in 
experiment, but the magnetic structure is artificially imposed. C-n means that the topological 
charge C is |C| n= . C2-m means that the monopole charge C C C( )/22 = −↑ ↓  is C m| |2 = . The 
letters u, v, w in the second column stand for the coordinates in momentum space. DCP, 
duodecuple point; ONL, octuple nodal line; OP, octuple point; SP, sextuple point; QNPL, 
quadruple nodal plane; DP, Dirac point; TP, triple point.
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remaining ones have strong Dzyaloshinskii–Moriya interactions, such 
as the reported altermagnet Fe2Mo3O8 with a Dzyaloshinskii–Moriya-
interaction-induced magnon polaron51. In addition, the half-filled 4f 
magnets are also largely compatible with the framework of SSGs, such 
as Gd3+ in GdAlO3 and GdAgSn. However, the MSG framework could 
be more applicable for the 5d and 5f magnets owing to their strong 
Dzyaloshinskii–Moriya interaction or exchange anisotropy. These 
results indicate that SSG serves as an ideal framework for describing 

magnon band nodes in most 3d, 4d and 4f collinear magnets. Detailed 
information regarding the calculated exchange interactions for 223 
candidates is available in Supplementary Information section 6. More 
discussions on band topology, nonlinear magnons and their SOC effects 
can be found in Methods.

The main outcome of this work is twofold. First, we present a compre-
hensive representation theory of 1,421 collinear SSGs, which includes 
the spin Wyckoff positions, spin Brillouin zones and band represen-
tations associated with each wavevector. Such a framework allows 
for the full tabulation of unconventional quasiparticles beyond the 
MSGs. Second, we provide a dictionary of more than 200 candidate 
materials that host unconventional magnons, identified through 
high-throughput calculations. The integration of SSGs and the col-
linear magnets listed in the MAGNDATA database facilitates efficient 
and systematic characterization of magnons showing non-trivial 
nodal topology. By virtue of this, the unconventional magnons have 
the potential to host topologically protected, uncharged surface 
states, leaving fruitful transport and neutron scattering signatures for  
experiments.

Online content
Any methods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions 
and competing interests; and statements of data and code availability 
are available at https://doi.org/10.1038/s41586-025-08715-7.
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Fig. 3 | Material candidates hosting unconventional magnons. a–c, The 
magnetic structure (a), magnon band structure (b) with a zoomed-in view (c) 
of collinear FM Gd4Sb3, which has six-, four- and three-fold band crossings.  
d–f, The same as a–c, but for collinear AFM Cu3TeO6 with 6-fold band crossing 
at the Γ and H points. g–i, The same as a–c, but for altermagnet FeS, which has 
octuple degeneracy at the A point and magnon chirality splitting along the  

A–K line. The red and yellow lines represent the magnon chirality splitting bands 
with magnon spin S = 1 and S = −1, respectively, and the blue lines represent 
spin-degenerate bands. j–l, The same as a–c, but for collinear AFM Fe0.35NbS2 
with C-4 octuple magnons at the R point. The red lines indicate the quadruple 
Z–U–R–T nodal plane. A schematic of the Brillouin zone for each candidate can 
be found in Supplementary Information section 7.

Table 2 | Statistics of bilinear exchange interactions with SOC

Magnetic ions Materials <10% |J| J dominated

|D| |Jani| |Γ|

3d 194 175 182 189 169

4d 7 5 5 6 5

4f 12 11 10 11 9

5d 6 1 0 3 0

5f 4 1 0 3 0

Total 223 193 197 212 183

The second column presents the number of collinear magnets classified by the outermost 
shell of magnetic ions in the first column. The third to fifth columns evaluate the number of 
materials in which the magnitude of the Dzyaloshinskii–Moriya interaction (D), exchange  
anisotropy (Jani) and anisotropic symmetric (Γ) terms does not exceed 10% of that of the 
Heisenberg term (J), respectively. The last column gives the number of J-dominated magnets, 
in which none of |D|, |Jani| and |Γ| exceeds 10% |J|. Detailed statistical methods and exchange 
parameters can be found in Supplementary Information section 6.
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Methods

Band representation theory for SSGs
Band representations are constructed from the atomic limit as intro-
duced by Zak52. Building on Zak’s theory, the theory of topologi-
cal quantum chemistry and symmetry indicators were used in 
electronic topological diagnosis, where thousands of materials  
with topological electronic bands have been successfully identi-
fied53–59. Here we extend it to the SSG. First, we construct the spin site 
group qGS  of the SSG GS, the corresponding character table and the 
irreps of orbit basis qρ S±, where q is any point in the unit cell of magnetic 
lattice. Among these spin site groups, only 32 FM spin point groups 
can support non-zero magnetic moments and carry magnon. Second, 
to induce full band representations ρ ρ G= ↑S S S± ±

q , we seek a 
coset decomposition of qGS . All orbits of the Wyckoff position 

g g G{ = | ∈ }α α α1 Sq q , α = 1, 2, ..., n with multiplicity n of the Wyckoff 
position are derived. The SSG element gα, combined with the trans-
lation T, generate the decomposition of GS with respect to the  
GS

q:

G g G= ( ) (1)
α

αS S⋃ ⋉Tq

The full band representation ρ ρ G= ( ↑ )S S S± ±
q  is induced from orbital 

representation qρ S±, then we restrict it to band representations of k-little 
groups k kρ ρ G= ↓S S S± ±  with ingredients:

∑
χ g
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where t g= −αα α αq q . In this step, the character table of the unitary 
part of kGS  is also constructed. At last, we perform sum rules60 to 
account for the introduction of antiunitary operations and the band 
representation kρ S± in spin Brillouin zone is determined. The bases of 
magnon bands S± transform as the irreps of the spin site groups of 
the magnetic ions. For collinear magnets, the spin site group always 
has SO(2) spin rotation symmetry, S± thus transform as ms = ±1 irreps 
of SO(2) in spin space (ms represents the spin angular momentum), 
whereas the real-space part only provides the identity irrep  
for S±.

Two mechanisms of extra two-fold degeneracy provided by spin 
space
For a collinear AFM, GS has the form of E G U AG Z({ } + { (π) })×↑ ↑ 2

K ⋉n  
SO(2). Here we briefly show how the combination of SO(2) spin sym-
metry with U A{ (π) }n  or  T||A{ } will pair two one-dimensional irreps into 
a two-dimensional irrep for S± in spin space.

Despite the pure space rotations (G k
↑ ) and pure spin rotations from 

SO(2) symmetry in the little group G k
S , three symmetry operations 

account for the two-fold degeneracy in spin space, including nU A{ (π) }, 
T||A{ } and nTU E{ (π) }. Here we show how these operations act with the 

zU ϕ( ) in the S S{ , }+ −  basis.
The matrix representations of spin rotations and the time reversal 

are written as:
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where K is the complex conjugation operator, and we use n = x.
For U A{ (π) }x :
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where D∞ provides two-dimensional irreps for S±.

For T||A{ }:
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where the time reversal binds two conjugated one-dimensional irreps 
in spin space into a two-dimensional co-irrep.

For TU E{ (π) }x :
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TU E{ (π) }x  cannot contribute to the new degeneracy.
Therefore, we can conclude that both U A{ (π) }n  and T||A{ } can lead 

to the emergence of two-dimensional irreps in spin space. More details 
on band representations of collinear SSGs and the construction of 
magnonic band representation for SSG I a 3 1m1 1 ∞  (Cu3TeO6 case) can be 
found in Supplementary Information section 1.6.

Database for collinear SSG symmetry
Starting from 1,421 collinear SSGs, we establish the position-space 
description of collinear SSGs, where the spin site groups for all spin 
Wyckoff positions can be defined and characterized by 90 collinear 
spin point groups. Among these groups, only 32 FM spin point groups 
support non-zero magnetic moments, resulting in a reduction of the 
total number of spin Wyckoff positions from 12,481 to 6,368. Mean-
while, we introduce a momentum-space description for collinear SSGs, 
exhausting the spin Brillouin zones and high-symmetry k points using 
24 mapped centrosymmetric symmorphic space groups. Subsequently, 
by employing band representation theory for SSGs as stated earlier, 
we derive the irreducible little co-representations of magnons in col-
linear SSGs and enumerate all band representations hosting uncon-
ventional magnons. Finally, we construct k·p effective models around 
the degenerate points and evaluate the node topology characterized 
by chiral charge or monopole charge, identifying all unconventional 
magnons beyond the scope of MSGs. The general positions, spin Wyck-
off positions, spin site groups, spin Brillouin zones, k-little co-groups 
and magnon band representations for all collinear SSGs are available 
in our online database FINDSPINGROUP.

Density functional theory calculations
All density functional theory (DFT) calculations herein were per-
formed using the projector augmented wave method, implemented 
in the Vienna Ab initio Simulation Package (VASP)61,62. The general-
ized gradient approximation of the Perdew–Burke–Ernzerhof-type 
exchange-correlation potential63 was adopted. For all candidate materi-
als, we used a cut-off energy of 500 eV, which typically leads to numeri-
cal convergence. We used Γ-centred Monkhorst–Pack meshes64, with 
the standard for each direction being the product of the number of k 
points and a lattice length greater than 45 Å. For the d- and f-electron 
magnetic atoms, the initial magnetic moments were set to 5 μB and 7 μB, 
respectively. To include the effect of electron correlation, the DFT + U 
approach within the rotationally invariant formalism65 was performed 
with the Ueff values based on the reported value from literature, which 
are provided in Supplementary Information section 5 for each mate-
rial. To get an accurate determination of the exchange interactions, a 
self-consistency convergence within 10−7 eV was achieved in our calcula-
tions. Tight-binding models were constructed from DFT bands using 
the WANNIER90 package66,67, and then the TB2J code68 was used to 
extract the magnetic exchange parameters. The spin-exchange cut-off 
distance was set to truncate when the absolute value of the remaining 
Heisenberg exchange coefficients J is one-thousandth of the largest 
J value or numerically less than 0.001 meV. Detailed parameters of 
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Heisenberg exchange interactions for calculating the magnon band 
structure can be found in Supplementary Information section 6.

Magnon band structure calculations
The magnon band structures were all calculated using the linear spin 
wave theory and the Heisenberg spin Hamiltonian. The ground-state 
spin Hamiltonian can be changed into quadratic Hamiltonian by  
performing the Holstein–Primakoff transformation and Fourier 
transformation:

∑H ψ k H k ψ k= ( ) ( ) ( ) (6)
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where δab is the Kronecker delta, and R and τ represent the lattice trans-
lation vector and the position of magnetic ions in the lattice basis, 
respectively. When Sa is parallel to Sb, αab = 1, γab = 1 and λab = 0; when 
Sa is antiparallel to Sb, αab = 0, γab = −1 and λab = −1.

On the basis of the above, the eigenvalues and eigenvectors of mag-
non Hamiltonian can be calculated by diagonalizing H(k)· I−, where 









I

I
I

=
0

0 −
m

m
− , and Im is the m-directional identity matrix, where m rep-

resents the number of magnetic ions in a primitive cell under SSG.

Topological charges H(k)
We characterize the topology of the degenerate point by calculating 
the topological charge. For the nodal point, we calculate the Wilson 
loops on a sphere enclosing the nodal point69,70:

∮W θ A k k( ) = ( )d (9)

where θ is the polar angle of the sphere, and A k ψ k ψ k( ) = i⟨ ( ) ∇ ( )⟩ is the 
Berry connection.

Now we show the different symmetry operations on A(k):

PA k A k TA k A k UA k A k( ) = − (− ), ( ) = (− ), ( ) = ( ) (10)

As a result, the topological charge is zero at P-symmetric k points 
as PW(θ) = W(π − θ), where Wilson loop is symmetric about the θ = π/2 
plane. This conclusion can be generalized to PCn-invariant k point, 
where Cn is any proper space rotation. However, the time reversal T and 
spin rotation U does not give any constrains on the topological charge.

For collinear FMs, when the k-little group is chiral, it can host a 
non-zero topological charge. For collinear AFMs, the magnon Hamil-
tonian can be separated into two spin channels with spin angular 
momentum S = ±1, the two degenerate spin channels should be con-
nected by TA or UA. If the k-little sublattice group G k

↑  is chiral, it can 
host a non-zero topological charge C↑ in the spin-up channel. The two 
spin channels can have identical or opposite topological charges when 
the two sublattices are connected by proper or improper A. In the for-
mer, the topological charge will be doubled as C = 2C↑, whereas C = 0 
in the latter. For the compensated charge with improper A, we can 
define a monopole charge C2 = (C↑ − C↓)/2.

Therefore, the nodal points of two degenerate branches have oppo-
site (identical) topological charges for type II (IV) SSGs owing to the 

PT (Uτ) symmetry in the whole-spin Brillouin zone. For type III SSGs, if 
G k

↑  is chiral and the k-little group Gk contain TA and UA operation, the 
two magnon branches will degenerate with doubled or compensated 
topological charge when A is proper or improper. However, when the 
k-little group does not contain TA and UA operations, the two magnon 
branches will split and the sign of topological charge in two channels 
is irrelevant.

Detailed information about the non-zero topological charges of 
magnonic irreps in collinear SSGs at symmetry-protected degeneracies 
is provided on our online program FINDSPINGROUP.

Band topology and nonlinear magnons
For collinear magnets, there exists an effective time-reversal sym-
metry TUn(π) that squares to one. Consequently, magnons in collinear 
magnets fall into the symmetry class AI of the Altland–Zirnbauer ten-
fold classification for topological insulators and superconductors, 
which does not support strong topological insulating phase in three 
dimensions71,72. Recent studies have shown that SOC-free weak topo-
logical insulators could exist in altermagnets73. In contrast, under 
nonlinear spin wave theory, the introduction of magnon–magnon 
interaction does not break the SO(2) symmetry in collinear magnets. 
Thus, it does not change the band degeneracy, although it may cause 
band renormalization74. However, adding a SOC term to the collinear 
spin Hamiltonian typically opens a small gap, sometimes rendering 
the emergence of symmetry class AII and Z2  gapped topological 
phase. For example, the introduction of a Dzyaloshinskii–Moriya 
interaction in pyrochlore, honeycomb and kagome FMs can transform 
Dirac magnons into topological magnon bands75–77. In this case, the 
description of SSGs is still useful in that it can be used to search the 
SOC-induced small gap, which is often the perquisite of magnon 
topological materials, such as Chern insulators and axion insulators. 
Furthermore, the incorporation of the Dzyaloshinskii–Moriya inter-
action and magnon–magnon interactions can cause multiple topo-
logical phase transitions78,79. Overall, understanding the evolution 
from node topology to band topology with the introduction of the 
SOC effect and its impact on magnon transport will be valuable for 
the development of magnon-based spintronic devices, and is left for 
future studies.

Comparison between electrons and magnons in collinear SSGs
Importantly, we emphasize that although our focus is on magnon 
systems, the main results of unconventional quasiparticles origi-
nating from band degeneracies can be straightforwardly applied to 
electronic systems. In the framework of the (magnetic) space group, 
the double-valued representation of spin-1/2 fermions requires the 
so-called double group to describe an additional −1 phase of 2π rota-
tion. In sharp contrast, the particularity of collinear SSGs renders 
that the dimension of the band representations for both fermions 
and bosons remains invariant within 4π rotation. This is because the 
infinite spin-only group SO(2) has the double-covering group of itself, 
and can thus be regarded as either a single group or a double group. 
Therefore, SO(2) always provides one-dimensional irreps labelled 
by spin angular momentum ms = ±1/2 for electrons and ms = ±1 for 
magnons. The only difference between fermions and bosons in col-
linear SSGs occurs solely within the phase in irrep matrices. Detailed 
information on the comparison between band representations for 
electrons and magnons in collinear SSGs is provided in Supplementary 
Information section 1.6.4.

Data availability
All data are available in the Supplementary Information and through 
our public website, the online program for identifying SSG symmetry 
and the collinear SSG-symmetry database (https://findspingroup.
com/).
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Code availability
All codes are available through our public website, the online program 
for identifying SSG symmetry and the collinear SSG-symmetry database 
(https://findspingroup.com/).
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