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Magnetic geometry induced quantum
geometry and nonlinear transports

Haiyuan Zhu1,5, Jiayu Li 1,2,5, Xiaobing Chen 1,3, Yutong Yu 1 &
Qihang Liu 1,3,4

The combination of quantum geometry and magnetic geometry in magnets
excites diverse phenomena, some critical for antiferromagnetic spintronics.
However, very few material platforms have been predicted and experimentally
verified to date, with the material pool restricted by the assumed need for
strong spin-orbit coupling (SOC). Here, we bypass the need for SOC by con-
sidering magnetic order induced quantum geometry and corresponding non-
linear transports (NLTs) in antiferromagnets (AFMs). By integrating spin space
group theory into the symmetry analysis, we find that collinear and coplanar
magnetic geometries canonly induceNLTdrivenbyBerry curvature dipole, and
noncoplanar onesmay triggerNLT driven by dipoles of Berry curvature, inverse
mass, and quantum metric. Using this approach, we establish a materials
database of 260 AFMs with SOC-free NLT effects, and complement this with
first-principles calculations on several prototypical material candidates. Our
work not only provides a universal theoretical framework for studying various
magnetism-driven transport effects, but also predicts broad, experimentally
accessible material platforms for antiferromagnetic spintronics.

Nonlinear effects are widespread in various fields of modern physics,
spanning from second harmonic generation in optics1 to chaos in
classical and quantum dynamics2. Spotlighting condensed matter
systems, electrical nonlinear transport (NLT) is notonly the foundation
of next-generation devices such as full-wave rectification3,4, but also a
generic method tomeasure the distribution of the quantum geometry
of states in momentum space5–12. In crystals, the quantum geometry,
including Berry curvature and quantum metric, characterizes the
curving and distances between neighboring Bloch states and is closely
related to the topological properties of the system13. In magnetic
crystals, the crossover between the quantum geometry in momentum
space with the magnetic geometry in real space yields a diverse range
of phenomena. Recently, it has been pointed out that second-order
transports allow for the efficient detection of the Néel vector orien-
tation, making them ideal for antiferromagnetic spintronics14–18.

Despite the promising applications, however, very few antiferro-
magnets (AFMs) have been theoretically predicted9,10,17–21 and experi-
mentally proven11,12,22 to generate NLT so far. One reason is the long-
known assumption that quantum geometry, accompanied by band
anti-crossings, originates from spin-orbit coupling (SOC)23–25, where
the material pool was narrowed down to magnets composed of heavy
elements. Another reason is that magnetic materials possess more
complex and fragile magnetic structures, especially for AFMs. Experi-
ments may observe results inconsistent with theoretical predictions
due to the discrepancy of magnetic geometry26–28.

To circumvent these issues, we consider the NLTs5,9,10,21,29–31 driven
by magnetic geometry rather than SOC, termed geometric NLTs, in
AFMs with experimentally verified magnetic configurations. It has
been pointed out that complex magnetic geometry can inherently
produce anomalousHall effect32,33, spin splitting34–39, and spin-resolved
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transports40–45. Nevertheless, it is unclear for NLT whether magnetic
geometry can trigger quantum geometry without the assistance of
SOC. If so, it may generate more significant NLT due to the strong
exchange interactions. Unfortunately, the conventional framework,
where the NLT tensors are constrained by themagnetic space group of
the magnetic geometry10,46,47, provides no answer to this question. In
magnetic space groups, rotational operations of spin and lattice are
completely locked, thus entangling the magnetic geometry and SOC
contributions to any effect. As such, predicting geometric NLTs relies
on extensive computations post factum.

Here, we propose an efficient, symmetry-based framework to
uncover the link connecting magnetic geometry and quantum geo-
metry, and establish a database of inversion (P) broken AFMs with

geometric second-order transports. We employ the spin space group
(SSG) theory43,48–55 to investigate the contributions of magnetic geo-
metry toward quantum geometry and NLT. Our central result is that
magnetic geometry generally triggers the quantum geometry and the
second-order transports unless the effective symmetry suppresses all
the components, as listed inTable 1. By our framework, we deduce that
collinear and coplanar magnetic geometry can only produce effects
contributed by the Berry curvature dipole (BCD), where the combined
symmetry of time-reversal (T) and spin rotation serves as the effective
time-reversal Teff (see Fig. 1a, b) to eliminate quantum metric dipole
(QMD) and inversed mass dipole (IMD). In contrast, noncoplanar
magnetic geometry may, in general, produce all geometric quantities
for both the longitudinal and transversal second-order transports once
Teff and PTeff symmetries are absent (see Table 1).

Within our SSG framework, we a priori single out 260 experimen-
tally verified AFMs (120 collinear, 71 coplanar, and 69 noncoplanar
magnetic configurations) from the MAGNDATA database56,57 with geo-
metricNLT. Todemonstrate the accuracy of our framework,wepresent
specific material candidates with density functional theory (DFT) cal-
culations, including a collinear AFM VNb3S6 with Teff exhibiting NLT
induced by BCD, a room-temperature noncoplanar AFM CrSe with PTeff

exhibiting NLT induced by QMD, and other materials such as coplanar
AFM Ca2Cr2O5, noncoplanar AFMs, CuB2O4, and strain-engineered
Mn3CoGe, with NLTs driven by quantum geometric dipoles. Remark-
ably, wefind that themagnitudes of geometricNLTs canbe comparable
to or even larger than NLTs triggered by SOC, providing a deeper
understanding of large NLTs in magnetic materials. Our work not only
broadens the scope from magnetic-geometry-induced spin splitting to
quantum geometry, but also paves a new avenue for the material dis-
covery of nonlinear physics in unconventional magnets58.

Fig. 1 | Effective time-reversal symmetry. a–c Effective time-reversal symmetries
always emerge in collinear (a) and coplanar AFMs (b), with U? πð ÞT and U 0

? πð ÞT ,
respectively, and may emerge in certain noncoplanar AFMs (c) with Tτ.
d–f Combined symmetry of spatial inversion and time-reversal PT is available in
certain collinear AFMs (d), while effective combined symmetry can emerge in
coplanar (e), and noncoplanar AFMs (f) with Un πð ÞTP. T : time-reversal; P: spatial

inversion; U? πð Þ: two-fold spin rotation along an axis normal to the Néel vector;
U 0

? πð Þ: two-fold spin rotation along the axis normal to all in-plane magnetic
moments;Un πð Þ: two-fold spin rotation alongn axis; τ: fractional lattice translation.
Red arrows and yellow balls denote magnetic moments and atoms, respectively,
and shadowed arrows represent the intermediate state of magnetic moments
operated by part of the combined symmetry, i.e., T in (a–c) and P in (d–f).

Table 1 | Magnetic geometry-induced second-order con-
ductivities by symmetry analysis

AFM Teff PTeff IMD
& QMD

BCD Representative
compounds

Coplanar
(include
collinear)

✔ ✔ ✘ ✘ MnBi2Te4

✔ ✘ ✘ ✔ VNb3S6

Noncoplanar ✔ ✔ ✘ ✘ Ce3NIn

✔ ✘ ✘ ✔ MgV2O4

✘ ✔ ✔ ✘ CrSe

✘ ✘ ✔ ✔ CuB2O4

All the AFMs are supposed to be noncentrosymmetric. In the column of Teff and PTeff, ✔ and ✘

represent the presence and absence of the specific effective symmetry, respectively. In the
columnof “IMD&QMD” and “BCD”,✔ and✘denote the correspondingnonlinear transport to be
allowed and disallowed by Teff and/or PTeff, respectively.
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Results
Effective time-reversal symmetry in antiferromagnets
Let us first describe how the effective symmetries relevant to NLT
emerged without SOC. Despite the breaking of T in magnets, mag-
netic geometrymay emerge effective time-reversal symmetry59 Teff to
constrain the NLT, where a well-known example is the combined
symmetry of time-reversal and fractional lattice translation in the so-
called Tτ-AFMs, e.g., MnBi2Te4. More importantly, the magnetic
geometry without SOC leads to richer Teff symmetry as the spin and
lattice space are partially decoupled. Indeed, all the symmetries of the
magnetic geometry form an SSG (Supplementary Section 1), where
each symmetry operation takes the form uj rj jτf g with u and r being
the spin and lattice rotation, respectively, and τ the lattice translation.
Notice that the role of T in spin space is analogous to that of inversion
P in lattice space. Then the key point is that without SOC, the charge
transport is blind to proper spin rotation but affected by improper
one. Therefore, in any collinear AFM, the improper spin rotation
u=U? πð ÞT maintains the magnetic geometry and serves as the Teff

symmetry (Fig. 1a), provided U? πð Þ is a two-fold spinful rotation
about an axis perpendicular to the Néel vector. Similarly, Teff also
emerges in any coplanar AFM since u=U 0

? πð ÞT always exists (Fig. 1b),
with U 0

? πð Þ the two-fold spinful rotation along the axis normal to all
magnetic moments. On the contrary, noncoplanar AFMs do not
respect spin-only rotational symmetry, while some of them contain
Tτ as Teff (Fig. 1c). These effective time-reversal symmetries of the
magnetic geometry constrain the T -odd charge transport tensors.

Besides T symmetry, the combination of spatial inversion and
time-reversal, PT , is also a crucial symmetry for NLT, as it suppresses
the nonlinear Hall effect5, where the collinear AFM CuMnAs is a
famous instance9,18 (Fig. 1d). For coplanar and noncoplanar AFMs,
however, the exact PT symmetry is generally missing owing to the
complex magnetic geometry. Nevertheless, the absence of SOC
allows themagnetic geometry to carry out the combined symmetry of
improper spin rotation and spatial inversion as the effective PTeff . For
example, a coplanar AFM shown in Fig. 1e is invariant under spatial
inversion P followed by spin rotation Uy πð ÞT with Uy πð Þ the two-fold
spin rotation along the y axis, and so does the noncoplanar AFM with
Uz πð ÞTP, as presented in Fig. 1f. These PTeff symmetries emerged
from magnetic geometry constraint the PT -odd charge transport
tensors.

Second-order transport tensor and its symmetry constraint
With the crucial effective symmetries of magnetic geometry, we next
consider the NLTs, especially the second-order transports, originating
from distinct geometric quantities. In general, the current density J

driven quadratically by electricfield E is given by Jα = σαβγEβEγ (Fig. 2a),
where σαβγ is the second-order conductivity tensor of rank-three with
spatial indicesα,β, γ = x, y, z, and the summationover repeated indices
is implied. Finite second-order conductivity demands necessarily the
breaking of P, resulting in dipole terms to generate NLT. Using the
quantum kinetic theory30,60 in weak scattering regime (ignoring dis-
order effects61,62), we deduce that three dipole terms contribute to the
conductivity tensor with different polynomial dependences on
relaxation time20 (τr): IMD contribution σIMD / τ2r ; BCD

5 contribution
σBCD / τ1r ; QMD21,29–31 contribution σQMD / τ0r (see “Methods” section
and Supplementary Section 2). The dependence on relaxation time
encodes the symmetry transformation from distinct contributions
under T and PT : IMD andQMDcontributions areT -odd, while the BCD
contribution is PT -odd (“Methods” section). All these dipole terms
have geometric significance. Specifically, the inverse mass tensor18

wαβ
l = _�2∂α∂βεl , known as a Hessian tensor with ∂α � ∂=∂kα

, describes

the local curvature of the l-th energy band manifold εl . In the mean-

while, quantum metric Gαβ
l and Berry curvature Ωαβ

l , forming the

quantum geometry tensor13 Qαβ
l =Gαβ

l � iΩαβ
l =2 =

P
n ≠lð ÞA

α
lnA

β
nl , depict

the geometric properties of the l-th Bloch state juli, where
Aα
ln = ihul j∂αuni is the interband Berry connection. In second-order

conductivity, the quantum metric is normalized to

Gαβ
l =Re

P
n ≠lð ÞA

α
lnA

β
nl= εl � εn

� �h i
, also known as the Berry connection

polarizability10,29. All three dipole terms can be considered as the

electrons on the Fermi surface carrying special charges of wαβ
l , Ωαβ

l ,

andGαβ
l , and transportingwith group velocity vγl , as shown in Fig. 2b–d.
We now employ symmetry analysis to restrict NLT tensors. First,

for general symmetries P and T , all the dipole terms areP-odd and so is
the second-order conductivity, while the conductivity tensors con-
tributed by IMD and QMD are T-odd and that by BCD is T -even.
Combining them yields that IMD and QMD contributions are PT-even
and BCD contributions are PT -odd. These relations are also valid for
effective symmetries ofTeff and PTeff emerged inAFM, and thegeneral

J     |E|2
E

BCD IMD
QMD

wl
αβ Ωl

αβ  l
αβ

vl
γ vl

γ vl
γ

εl

εn

EF

∂α

∂β

∂α

Al
β Aln , Anl  

α β

wl   = h-2∂α∂βεl
αβ Ωl    = ∂αAl - ∂βAl

αβ β α  l     =  αβ  n (≠l)Σ 2(εl - εn)
AlnAnl + AlnAnl

α αβ β

No 2nd-order effect
543 (67.6%)

120 (14.9%)

71 (8.9%)

69 (8.6%)

Collinear

Coplanar

Noncoplanar

(noncollinear)

803 noncentrosymmetric AFMsa e

Fig. 2 | Second-order transports and statistics of the AFMmaterial database.
a Schematic of nonlinear charge current J / Ej j2 drivenby the electricfieldE, where
the current is contributed by three geometric quantities as IMD, BCD, and QMD.
b–d Physical mechanisms and formulae for IMD (b), BCD (c), and QMD (d), and
their polynomial dependence on relaxation time τr . e Among 803 noncentrosym-
metric AFMs, 543 AFMs have no second-order transport effects. Among the

remaining 260 materials, 120 and 71 AFMs with collinear and coplanar anti-
ferromagnetic geometry, respectively, are found to have BCD-contributed second-
order transport effect, while 69 AFMs with noncoplanar antiferromagnetic geo-
metry are found to allow second-order transport effect contributed by at least one
geometry quantity. IMD inverse mass dipole, BCD Berry curvature dipole, QMD
quantum metric dipole.
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symmetry constraints onNLTconductivities are collected inTable 1. As
one can see, IMD and QMD share the same symmetry constraint. Two
consequences are concluded: (i) in noncentrosymmetric AFM with
collinear and coplanar magnetic geometry, only the BCD-contributed
non-longitudinal current is allowed if no PTeff emerges. (ii) Only
noncentrosymmetric AFM of noncoplanar magnetic geometry allow
longitudinal and transversal current contributedby IMDandQMD ifno
Teff emerges, and the BCD contribution is additionally allowed if no
PTeff exists. Note here that the allowance by Teff or PTeff does not
necessarily imply the existence of NLT, as other spin group symmetry
constraints still need tobe considered. Given any spin group symmetry
uj rj jτf g, the BCD and IMD/QMD tensors are transformed by

σαβγ
BCD =RαμRβνRγησμνη

BCD
ð1Þ

σαβγ
IMD=QMD = det Uð ÞRαμRβνRγησμνη

IMD=QMD ð2Þ

where R and U are the representation matrices of r and u under Car-
tesian coordinates. Considering the BCD-contributed tensors as vector
σxxx
BCD, � � � , σzzz

BCD

� �
, Eq. (1) provides the linear transformation of it and

the eigenvectors of the transformation solve the uj rj jτf g-allowed BCD-
contributed tensors (see Supplementary Section 3), where the
procedure for allowed tensors contributed by IMD/QMD is the same.
In nonmagnetic systems, the procedure for BCD leads to that only
gyrotropic point groups63, except for the tetrahedral and octahedral
groups, are sufficient for nonzero BCD contributions (see Supplemen-
tary Section 4). Here for AFM, provided its SSG, the symmetry-allowed
conductivity tensors of any magnetic geometry can be predicted by
Eqs. (1) and (2). Notice that BCD contribution bears extra constraint of
σαβγ
BCD + σβγα

BCD + σγαβ
BCD =0 (see “Methods” section and Supplementary

Section 3).

Diagnosis of realistic materials
To materialize the magnetic-geometry-induced NLT, we construct a
complete database of validated AFMs with second-order conductivity
tensors allowed by SSG symmetry. Starting from ~1700 experimentally
validated AFMs in the MAGNDATA database56,57 on the Bilbao

Crystallographic Server (BCS; http://www.cryst.ehu.es), we selected
803 noncentrosymmetric AFMs as a material pool. Subsequently, the
SSG of each AFM was recognized by our online program
FINDSPINGROUP51. With the SSG for any AFM at hand, we predicted
which geometric contributions are possible by checking Teff and PTeff

according to Table 1, and further solved which tensor components are
allowed under the constraints by SSG using Eqs. (1) and (2) imple-
mented in FINDSPINGROUP. Finally, a database of 260 AFMs with
geometric NLT tensors induced by magnetic geometry is established,
where 120 collinear and 71 coplanar AFMs allow BCD-contributed NLT.
We also found69noncoplanarAFMswith SSG-allowedNLTs, 21 among
which feature all NLTs contributed by both IMD, BCD, and QMD. Our
comprehensive database includes a large fraction (about 32.4%) of 803
noncentrosymmetric AFMs, revising the previous consensus that
nontrivial transports are generally triggered by SOC. A snapshot of the
AFM database is presented in Fig. 2e, and the full list is provided in
Supplementary Section 4, Tables S1–S3 as well as the online database
FINDSPINGROUP.

Material examples
Below, we chose two candidates from our database and performed
DFT-level calculations on the second-order transport tensors (“Meth-
ods” section). The first example is the transition metal VNb3S6 crys-
tallized by 1H-NbS2 layers with V inserted at interlayer positions as
shown inFig. 3a,where themagneticmoments in the same (adjacent) V
layer are parallel (anti-parallel) with the Néel vector oriented along a
axis64. The SSG is recognized as P�16�1

3 2121m1, which is generated by
spatial rotations fT jjR 100½ � πð Þj 1=2� �

τcg, fEjjR 120½ � πð Þj0g, skew rotations
T jjRz π=3

� �j 1=2� �
τc

� �
with τc = 0,0, 1ð Þ the lattice translation, and the

spin-only subgroup1m 1 of infinite spin rotation along the Néel vector.
The band structure without SOC, as shown in Fig. 3b, exhibits the SOC-
free spin splitting due to the breaking of T . By the newly defined
altermagnetism, collinear AFM VNb3S6 is a so-called g-wave
altermagnet65. By Table 1, we predict that the Teff symmetry of Uz πð ÞT
naturally forbids the IMD/QMD contributions, while the absence of
PTeff symmetry implies the BCD-contributed conductivity tensor to be
allowed. From our database (Supplementary Section 4, Table S1), the
allowed BCD-contributed tensor components of VNb3S6, constrained

Fig. 3 | CollinearAFMVNb3S6. aCrystal structure and collinearmagnetic geometry
of VNb3S6.bDFT-calculatedband structureswith the projection onto opposite spin
components. Spin-orbit coupling is turned off. c Nonlinear conductivity tensor

contributed by BCD with relaxation time set τr = 1 ns. d Distribution of the BCD
∂zΩxy kx , ky

� �
in the slice of Brillouin zone kz =0 at �0:25 eV above the Fermi

energy.
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by SSG with Eq. (1), are σxyz
BCD = � σyxz

BCD. To verify this, the BCD-
contributed tensor components are computed without SOC in Fig. 3c,
showcasing that the quantum-geometry-driven NLT effect can be
inherently induced by magnetic geometry. Moreover, the maximum
value of σxyz

BCD approaches 75 S2=A (with relaxation time set τr = 1 ns)
at � 0:25 eV above the Fermi energy, which is comparable to the
nonlinear Hall conductivity of CuMnSb17. Such a large conductivity
originates from the BCD hot spot (Fig. 3d) at the corresponding
energy. Note that considering SOC barely changes the BCD contribu-
tion around the Fermi energy and only increases the peak by � 6%
(Supplementary Section 5, Fig. S6), indicating that magnetic geometry
is the dominant driving forceof NLT in VNb3S6 evenwith SOCcounted.

Our next example is CrSe of room-temperature (Néel temperature
290 K) noncoplanar antiferromagnetic geometry66,67, as shown in
Fig. 4a. Separated by Se layers, Cr atoms form layers of trigonal sub-
lattice in the ab plane, where the in-planemagnetic components inside
each Cr layer are related by spin rotation Uz 2π=3

� �
with alternating

out-of-plane (along c) magnetic components between neighboring
layers. The SSG of CrSe is P 2010 63=

�1mm010m�1cjð32001, 32001, 1Þ,
which is generated by fU 010½ � πð ÞjjRz π=3

� �j 1=2� �
τcg, fU 010½ � πð ÞT jjPj0g,

fEjjR 210½ � πð Þj0g, and spin screw rotation Uz 2π=3
� �j Ej j 1=3� �

τa +
�

2=3
� �

τbg and Uz �2π=3
� �j Ej j 2=3� �

τa + 1=3
� �

τb

� �
with τa = 1, 0, 0ð Þ and

τb = 0, 1, 0ð Þ. We find that CrSe contains fU 010½ � πð ÞT jjPj0g as PTeff

protecting the four-fold and six-fold band degeneracy at Γ and K ,
respectively51 (Fig. 4b). Besides band degeneracy, PTeff further elim-
inates the BCD contribution of NLT as seen from Table 1. By referring
to the database (Supplementary Section 4, Table S3), we predict the
SSG-allowed conductivity tensor components, contributed by QMD,
are σxyz

QMD = � σyxz
QMD. Once again, our DFT calculations on QMD-

contributed tensor components in Fig. 4c are consistent with the
spin group analysis, where the maximum is 23:4 S2=A at �0:19 eV
above Fermi energy, corresponding to the significant QMD (Fig. 4d).
Such QMD contribution triggered by magnetic geometry is much lar-
ger than that of �0:01 S2=A in MnBi2Te4 thin film12,21, which is purely
triggeredbySOC.Wenote that SOC induces opposite contributions on
σxyz
QMD, resulting in a net value of�0:2 S2=A (Supplementary Section 6,

Fig. S10). Such a large net NLT originates from the uncompensated
contributions from both magnetic geometry and SOC, implying that

the overlooked contribution frommagnetic geometry is not negligible
in CrSe.

Moreover, we note here that even though themagnetic geometry
and SOC contributions are entangled in realistic materials, one can
quantitatively estimate the geometric NLT by well-designed devices
and setups. For instance, in VNb3S6, we find that with the pure SOC
contributions σzxy

BCD measured in experiment, the geometric NLT of
σxyz
BCD can be quantitatively estimated from experimental data through

σxyz
BCD w=o SOC

� � � σxyz
BCD � σzxy

BCD, with σxyz
BCD measured in the 0001ð Þ

surface and σzxy
BCD in the 10�10

� �
surface (Supplementary Section 5,

Fig. S6). On top of using another component (σzxy
BCD), one can also

experimentally evaluate the geometric NLT σxyz
BCD itself by angular-

resolved signals in a multiterminal device via the sum frequency
method (Supplementary Section 7, Fig. S15).

Besides VNb3S6 and CrSe, we also perform DFT calculations on
Ca2Cr2O5

68, CuB2O4
69, andMn3CoGe

70, and the results are summarized
as follows: the coplanar magnetic geometry of Ca2Cr2O5 forbids the
T -odd effects, leaving two independent BCD components to be finite;
CuB2O4 with noncoplanar magnetic geometry allows both T -odd and
T -even conductivity components due to the absence of Teff and PTeff ;
Mn3CoGe with noncoplanar magnetic geometry should allow two
independent T-odd and T -even conductivity components, i.e.,
σxyz = σyzx = σzxy and σyxz = σzyx = σxzy. However, the extra constraint on
BCD components σxyz

BCD + σyzx
BCD + σzxy

BCD =0 eliminates all the BCD con-
tributions, where a uniaxial strain ϵz breaks the three-fold rotation
along 111½ � direction and also the identity σxyz = σyzx = σzxy. Hence,
uniaxial strain can induce BCD-contributed NLT in Mn3CoGe. All these
results are consistent with our a priori predictions in Supplementary
Tables S1–S3, and the details are provided in Supplementary
Sections 5 and 6.

Discussion
We propose an efficient framework to search for AFMs with magnetic-
geometry-driven quantum geometry and second-order charge trans-
port. Our diagnosis of magnetic geometry triggered second-order
transport is based on the complete symmetry analysis of SSG rather
than the conventional magnetic space group. Within amagnetic space
group, the symmetry-allowed NLT tensors could be triggered by both

Fig. 4 | Noncoplanar AFM CrSe. a Crystal structure and noncoplanar magnetic geometry of CrSe. b DFT-calculated band structures without spin-orbit coupling.
c Nonlinear conductivity tensor contributed by QMD. d Distribution of the QMD ∂xGyz kx , ky

� �
in kz =0 plane at �0:19 eV above Fermi energy.
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of magnetic geometry and relativistic SOC. One can only disentangle
their contributions post factum by performing time-consuming first-
principles calculations on NLT tensors with and without SOC. Never-
theless, with the help of SSG, we a priori predict which NLT tensors are
triggered by magnetic geometry for any AFM. After that, the SOC
contributions can be immediately extracted by comparing the allowed
NLT tensors constrained by the SSG and magnetic space group. For
instance, we can directly point out that the experimentally observed
NLT of MnBi2Te4 induced by QMD is a pure SOC effect12,21. Further-
more, our framework is universal for other magnetic-geometry-
induced nonlinear effects like photovoltaic effects71 and current-
induced spin polarization72,73. It can also be easily extended for the
third-order transport effects74–78, which could be the leading order of
electrical transport effects in certain centrosymmetric magnets.

Methods
Nonlinear charge transport
In general, the current density J driven quadratically by the electric
field E is given by Jα = σαβγEβEγ. Here, σαβγ is the second-order con-
ductivity tensor. The conductivity tensor can be derived within the
quantum kinetic theory30,60. Here, we concentrate on the weak scat-
tering limit, i.e., ignoring disorder contributions61,62. Under the
relaxation time approximation, the dynamics of the density matrix is
encoded by the quantum Liouville–von Neumann equation:

i
_

H0,ρ
Nð Þ� 	

ln +
ρ Nð Þ
ln

τr=N
= � i

eE
_

� r,ρ N�1ð Þ� 	
ln, ð3Þ

where H0 is the field-free Hamiltonian, ρ Nð Þ / EN is the field-
perturbated density matrix, τr is the relaxation time, r is the position
operator, and l,n are the band indices. After tedious derivation, we
obtain three distinct conductivity tensors contributed by IMD, BCD,
and QMD, respectively, read

σαβγ
IMD τ2r

� �
= τ2r

e3

2
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vαl w
βγ
l

∂f l
∂εl
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� �
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e3
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X
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αγ
l

� �∂f l
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, ð5Þ

σαβγ
QMD τ0r

� �
= e3

X
k, l

vαl Gβγ
l � 2 vγl Gαβ

l + vβl Gαγ
l

� �h i∂f l
∂εl
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Here, wαβ
l = _�2∂α∂βεl is the inverse mass tensor, Ωαβ

l = �
2Im½Pn ≠lð ÞA

α
lnA

β
nl � is the Berry curvature tensor, Gαβ

l =
Re½Pn ≠lð ÞA

α
lnA

β
nl= εl � εn

� �� is the band-normalized quantum metric
tensor (also called Berry connection polarizability), vγl is
the group velocity of l-th band εl of γ component, and
f l = 1 + exp εl � μ

� �
=kBT

� 	� ��1 is the Fermi distribution function of
band εl . For full derivation, please see Supplementary Section 2.

As IMDandQMDcontributions areproportional to the evenorder
of τr , they are odd functions under time-reversal T but even functions
under the combination of spatial inversion and time-reversal PT . On
the contrary, the BCD contribution proportional to the odd order of τr
is T-even but PT-odd. This can be seen by expanding σαβγ with respect
to τr as σ

αβγ =
P

iτ
i
rχ

αβγ
i . Since the time-reversal operator maps σαβγ !

�σαβγ and τr ! �τr , χ
αβγ
2n is an odd function of T , and χαβγ2n+ 1 is an even

function. Thus, σαβγ
IMD / χαβγ2 and σαβγ

QMD / χαβγ0 are T -odd, while σαβγ
BCD /

χαβγ1 is T -even. As spatial inversion P flips σαβγ ! �σαβγ but preserves
τr , all three contributions are P-odd, implying that IMD and QMD
contributions are PT -even but BCD contribution is PT -odd.

Moreover, we note that σαβγ
IMD is symmetric under any permutation

of all three indices α, β, and γ, where σαβγ
BCD and σαβγ

QMD are symmetric

under permutation of the last two indices β $ γ. Moreover, the BCD
contribution bears one extra constraint79:

σαβγ
BCD + σβγα

BCD + σγαβ
BCD =0: ð7Þ

This simple relation implies three explicit constraints:

σxyz
BCD + σyzx

BCD + σzxy
BCD =0, α ≠β ≠ γ ≠α,

σααγ
BCD = σαγα

BCD = � 1
2 σ

γαα
BCD, α =β ≠ γ,

σααα
BCD =0, α =β = γ:

8><
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The last constraint implies the non-longitudinal nature of the BCD
contribution, which is ensured by the anti-symmetry of Berry curva-
ture Ωαβ

l kð Þ= �Ωβα
l kð Þ and σααα

BCD / vαl Ω
αα
l =0.

Density functional theory calculations
All DFT calculations herein are performed using the projector aug-
mented wave method80, implemented in the Vienna ab initio simula-
tion package (VASP)81. The generalized gradient approximation of the
Perdew–Burke–Ernzerhof-type exchange-correlation potential82 is
adopted. All the verified AFMs are collected in the MAGNDATA data-
base (https://www.cryst.ehu.es/magndata/). For 20-atom collinear
AFM VNb3S6, #0.712 in MAGNDATA with lattice parameter of the
magnetic unit cell a= b= 5:73 Å, c= 12:11 Å, we solve (3p,4s,3d) elec-
trons for V, (4p,5s,4d) electrons for Nb, (3s, 3p) electrons for S, with
Ecut = 400 eV and a k-point mesh of 13 × 13 × 5. For 12-atom non-
coplanar AFM CrSe, #2.35 inMAGNDATA with lattice parameter of the
magnetic unit cell a=b =6:37 Å, c =6:02 Å, we solve (3p,4s,3d) elec-
trons for Cr, (4s,4p) electrons for Se, with Ecut = 500 eV and a k-point
mesh of 13 × 13 ×9. Tight-binding models are constructed from DFT
bands using the WANNIER90 package83, and NLT tensors in gauge-
covariant form79 are calculated within the WannierBerri code84. The
numbers of sampled k-points in Fig. 3c and Fig. 4c are 1100 × 1100 ×
1100 and 1700 × 1700 × 1700, respectively. Crystal structures are
plotted by VESTA85. The SSGs of materials, labeled by the international
notation51, are diagnosed by the self-developed program FIND-
SPINGROUP at https://findspingroup.com.

Data availability
The data of the SSGs and tensors of AFMs are available with an inter-
active user interface at https://findspingroup.com. The supportive
data for plots and other funding in this study are available from the
corresponding author upon reasonable request.

Code availability
The computation code for getting the theoretical prediction is avail-
able from the corresponding authors upon reasonable request.
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