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The control of unconventional magnetism, which displays an antiferromagnetic configuration with
ferromagnetism-like properties, has drawn intense attention for advancing antiferromagnetic spin-
tronics. Here, through symmetry analysis, we propose a general stacking rule, characterized by a
connection operator linking two stacked bilayers, for controlling unconventional magnetism via slid-
ing ferroelectricity. Such rule enables the simultaneous switching of both electric polarization and
nonrelativistic spin splitting or anomalous Hall effect in altermagnets, a class of collinear uncon-
ventional magnets. By comprehensively surveying the 80 layer groups, we identify all the stacking
orders that allow for such two types of simultaneous switching. Combined with first-principles cal-
culations, we demonstrate the sliding ferroelectric control of spin polarization and anomalous Hall
effect in the altermagnetic AgF2 bilayer. Our work provides a symmetry strategy for achieving fer-
roelectric control of unconventional magnetism in bilayer systems and opens avenues for exploring
new types of magnetoelectric coupling.

Introduction—Unconventional magnetism is broadly
characterized by an antiferromagnetic (AFM) configura-
tion yet exhibiting ferromagnetism-like (FM-like) prop-
erties, including spin splitting, anomalous Hall effect
(AHE), quantum geometry, topological magnons, etc [1].
Recent advances in classifying unconventional magnets
according to spin-group symmetry have expanded the
current understanding of magnetism [2–10]. A promi-
nent example is altermagnetism, a type of collinear AFM
that displays nonrelativistic spin splitting in momentum
space [3, 4, 11–15]. The spin splitting originates from
the collinear magnetic order rather than from relativistic
spin-orbit coupling (SOC). Such magnetic order-induced
spin polarization enables various spintronic applications,
such as spin-polarized currents, spin-to-charge conver-
sion, spin torques, and magnetoresistance [4, 12, 16–22].
Another representative category of unconventional mag-
netism is the AFM exhibiting the anomalous Hall effect
(AHE) [23–28], which enables the electrical read-out of
the magnetic state. In collinear and coplanar AFMs, the
occurrence of the AHE necessarily requires SOC, while
for noncoplanar AFM, it can originate solely from the
magnetic order [29].

In AFM memories, controlling the two key properties
of unconventional magnetism, spin splitting and AHE,
opens new possibilities for information writing [30, 31].
A typical approach involves manipulating AFM moments
by a spin torque, which requires electrical current and
thus suffers from large energy dissipation [30, 32, 33].
Sliding ferroelectricity provides an energy-efficient alter-
native way [34–36] for controlling unconventional mag-
netism through a gate voltage, e.g., switching the spin po-
larization in altermagnets [37]. However, a universal and
efficient strategy for designing materials with coupled

sliding ferroelectricity and unconventional magnetism is
still lacking. Stacking has been previously demonstrated
as an effective approach for inducing either sliding fer-
roelectricity or altermagnetism in a wide range of two-
dimensional (2D) materials [38–43]. These findings mo-
tivate us to explore a general stacking strategy for achiev-
ing ferroelectric control of unconventional magnetism.

In this Letter, we propose a general symmetry rule
for controlling unconventional magnetism via sliding fer-
roelectricity in bilayer systems. Such a symmetry rule
can easily predict whether electric polarization and un-
conventional magnetism are coupled in stacked bilayers,
based solely on the crystallographic layer group of their
constituent monolayers, the stacking operation and the
magnetic configurations of the bilayers. By applying to
80 layer groups, we identify all the stacking orders that
enable ferroelectric control of spin polarization or anoma-
lous Hall effect in altermagnetic bilayers. Combined with
first-principles calculations, we demonstrate the sliding-
induced simultaneous control of ferroelectricity and un-
conventional magnetism in altermagnetic AgF2 bilayer.

Symmetry rules for sliding ferroelectricity—For
stacked bilayers, the existence of spontaneous electric
polarization or unconventional magnetism is theo-
retically governed by their symmetries established
on different group frameworks [39, 41, 44–47]. The
switching of these properties between two bilayer con-
figurations is determined by an operator that connects
them [15, 48–50], referred to as the connection operator.
Obviously, the connection operator determines the cou-
pling of ferroelectricity and unconventional magnetism.
Based on these symmetry rules, we identify ferroelectric
bilayers that can control unconventional magnetism as
follows.
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We first screen out all the stacked bilayers with slid-
ing ferroelectricity across all 80 layer groups. A bilayer
system (B) consisting of a bottom layer (S) and a top

layer (S′) can be expressed as B = S + S′ = S + ÔS,

where Ô = {O|to} is a stacking operator transforming
S into S′ [39]. Here, O is the rotational part, and to
is the translational part. A stacking operator Ô spec-
ifies a stacking order. We then consider a ferroelectric
bilayer with the same lateral unit cell size as its con-
stituent monolayers, possessing an out-of-plane electric
polarization component (P ). The symmetry operator

(R̂) of a bilayer system and the connection operator (N̂)
between two bilayer systems [see Fig. 1(a)] can be di-

vided into two classes, Q̂− and Q̂+ (Q̂ = R̂, N̂ ), which
can and cannot reverse P , respectively. For each layer
group of the constituent monolayer, we identify all the
stacking orders with only R̂+ symmetries that permit P
[39]. Then, we further screen out those with switchable
P through interlayer sliding (i.e., sliding ferroelectric-
ity). For two bilayer configurations, opposite P requires

a connection operator N̂ = N̂−, as shown in Fig. 1. By

solving the equation set for N̂− across 80 layer groups,
we identify all the stacking orders with switchable P ,
as detailed in Sec. 1 of the Supplemental Material [51].
Table I presents an example for layer groups No. 14-18
of the monolayer. A bilayer permits P when stacked
with O = m001 and to along the high symmetry line GB
or CA. P can be switched when changing the stacking
order from to to −N−to + t0 through interlayer sliding,
where t0 represents the pure translational symmetry of
the constituent monolayer.

Sliding ferroelectric control of spin polarization— Hav-
ing obtained all stacked bilayers with switchable P , we
turn to identify those with coupled ferroelectricity and
unconventional magnetism. We first consider ferroelec-
tric control of spin polarization in altermagnets. For 2D
altermagnets, the symmetry R̂, that connects two sub-
lattices with opposite spins, cannot be a translation t,

TABLE I. Stacking configuration of layer groups No. 14-18
for the sliding ferroelectric control of spin polarization and
AHE. GS (GB) denotes the layer group of the monolayer (bi-
layer); p2/m11 and p21/m11 in GS correspond to pm11 in
GB , p2/b11 and p21/b11 in GS correspond to pb11 in GB , and
c2/m11 in GS corresponds to cm11 in GB . to is represented
by high symmetry lines GB and CA in the rectangular lattice,
with G = (0, 0), A = ( 1

2
, 0), B = (0, 1

2
) and C = ( 1

2
, 1

2
).

For N−
s (N−

m), only the operators capable of switching the
spin polarization (AHE) are listed. The candidate monolay-
ers are screened from Ref. [52].

GS (No.) {O|to} GB N− N−
s N−

m Candidates

p2/m11(14)
p21/m11(15)
p2/b11(16)
p21/b11(17)
c2/m11(18)

{m001|GB,CA}
pm11
pb11
cm11

m001
2010

{2⊥||m001}
{1||2010}

m′
001

2010

AgF2, RuF4,
VF4, OsF4

FIG. 1. Schematic diagrams of (a) configurations (upper) and
bands (lower), (b) configurations (upper) and Berry curva-
tures (lower) of ferroelectric altermagnetic bilayers. The red
and blue colors of arrows (lines) denote the opposite magnetic
moments (spins). The black arrow denotes P . For the two
stacked bilayers in (a) or (b), one can be transformed into the
other through interlayer sliding. The sliding is equivalent to

applying a N̂− transformation, which maps the top (bottom)
layer of one bilayer to the bottom (top) layer of the other. The
solid circles in grey dotted line boxes denote atoms connected

by N̂−, which have opposite spins in (a) while the same spin
in (b).

inversion 1, rotation 2001, or any of their combinations
[40, 52, 53]. Because the considered ferroelectric bilayer

contains only R̂+ symmetry, the requirement is reduced
to R̂ not being t, 2001 or their combinations. For exam-
ple, altermagnetism is allowed in the ferroelectric bilayer
with layer group pb11 (see Table I). Thus, we identify
all the stacking orders allowing for altermagnetism from
screened ferroelectric bilayers, as highlighted in Tables
S1-S3 of the Supplemental Material [51]. It is worth
noting that the ferroelectric altermagnetic bilayers dis-
cussed here are fundamentally different from previously
reported altermagnetic bilayers with R̂ = R̂− (e.g., A-

type AFM) [41–43], where R̂− enforces a vanishing P .

In contrast, the R̂+ symmetry in a bilayer system con-
sidered here originates from the constituent monolayer, a
collinear antiferromagnet with different sublattices con-
nected by R̂+.

Then, we further identify the ferroelectric altermag-
netic bilayers with switchable spin polarization. We in-
troduce the connection operator N̂s [Fig. 1(a)], which is
an operator of the spin space group [2, 3, 5–7]. The in-
terlayer magnetic coupling includes two types: the Néel
vectors of the two constituent monolayers are aligned in
the opposite or the same direction [Figs. 1(a) and 1(b)].
We assume that the collinear magnetic moment of each
ion remains unchanged under interlayer sliding. Con-
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sequently, for the two atoms with opposite spins con-
nected by N̂– [Fig. 1(a)], considering spin rotation, they

are connected by N̂−
s , where the rotational part is given

by N−
s = {2⊥||N−}. Here the 2⊥ indicates a twofold

spin rotation along the axis perpendicular to the collinear
magnetic moments. Under N−

s = {2⊥||N−} operation,
the spin polarization distribution with respect to the
momentum sI(k) transforms into sII (k) = N−

s sI (k) =

−sI((N−)
−1

k), where the superscripts I and II denote

the two ferroelectric states connected by N̂−
s . Taking

N− = m001 as an example, since (m001)
−1

k = k for
any k point, the spin polarization across the entire Bril-
louin zone can be reversed under ferroelectric switching,
i.e., sII (k) = −sI(k), as shown in Fig. 1(a) and Ta-
ble I. Consequently, the connection operator N−

s , which
depends on N− and the type of interlayer magnetic cou-
pling, determines the spin polarization reversal. We find
that for all the ferroelectric altermagnetic bilayers con-
nected by N− screened above, at least one type of inter-
layer magnetic coupling enables spin polarization reversal
under ferroelectric switching.

Sliding ferroelectric control of anomalous Hall effect—
Now we discuss the ferroelectric control of another facet
of unconventional magnetism, i.e., AHE in AFM. Dis-
tinct from spin splitting, the symmetry requirement for
AHE in 2D systems is that the sign of Berry curvature
(Ω) remains unchanged under any symmetry operation.
We consider AHE in 2D altermagnets, indicating the ne-
cessity of SOC and the framework of magnetic group,
a specific subgroup of spin group. To achieve AHE in
antiferromagnets with symmetry-enforced zero magneti-
zation, the magnetic configuration must not align along
the out-of-plane direction, otherwise the symmetry op-
erations connecting the opposite-spin sublattices will re-
verse the sign of Berry curvature and thus enforce a zero
anomalous Hall conductivity [54]. We consider the in-
plane magnetic configuration. Because 2001 symmetry of
a 2D altermagnet only connects the same-spin sublattice,
it will result in a 2′001 symmetry in the magnetic point
group for the in-plane configuration, leading to a van-
ishing AHE. Hence, any altermagnetic bilayers with 2001
point-group symmetry should be ruled out. We screen
out all the stacking orders permitting AHE from the fer-
roelectric altermagnetic bilayers, as highlighted in Tables
S1-S3 of the Supplemental Material [51].

We further identify ferroelectric altermagnetic bilay-
ers with controllable AHE, which requires a sign rever-
sal of Berry curvature under ferroelectric switching [see
Fig. 1(b)]. When considering SOC, the connection op-
erator belongs to magnetic space groups and is denoted
as N̂−

m. The collinear in-plane magnetic configuration
imposes a constraint that N−

m ∈ {m001,m
′
001, 2α, 2

′
α},

indicating that N− ∈ {m001, 2α}, where 2α denotes a
twofold rotation with the rotational axis along in-plane α
direction. The sign reversal of Berry curvature requires

N−
m ∈ {m′

001, 2α} (see Table I). This condition can be
satisfied for all the above-screened ferroelectric altermag-
netic bilayers with AHE under an appropriate magnetic
configuration. Specifically, N−

m = m′
001 requires that the

two atoms connected by N− = m001 have the same spin
[see Fig. 1(b)]. On the other hand, N−

m = 2α requires
the two atoms connected by N− = 2α have the same (op-
posite) spins when the spin is parallel (perpendicular) to
the rotational axis of 2α.

It is worth noting that AHE switching is not necessar-
ily accompanied by a spin polarization switching in mo-
mentum space. According to our symmetry rules, for the
stacking orders connected only by N− = 2α, AHE and
spin polarization can be switched simultaneously under
ferroelectric switching. We mark all the stacking orders
that allow for a simultaneous ferroelectric switching of
both AHE and spin polarization, as highlighted in Ta-
bles S1-S3 of the Supplemental Material [51].

Sliding ferroelectric control of unconventional mag-
netism in altermagnetic bilayer AgF2—We now apply the
above symmetry analysis to realistic materials. Mono-
layer candidate materials that enable ferroelectric con-
trol of spin polarization and AHE via bilayer stacking
are listed in Table I and Tables S1-S3 of the Supple-
mental Material [51]. As an example, we consider AgF2,
whose bulk phase has been synthesized experimentally
[55, 56]. Monolayer AgF2 is a d -wave altermagnetic can-
didate with the crystallographic layer group p21/b11 (No.
17) [22, 52]. The sublattices with opposite spins are con-
nected by symmetries {m100| 12 ,

1
2} and {2100| 12 ,

1
2}. Al-

though ferroelectricity is prohibited in monolayer AgF2

due to the inversion symmetry, according to Table I, a bi-
layer configuration allows for ferroelectric control of spin
polarization and AHE when it is stacked with O = m001

and to along the high symmetry line GB or CA.

We next perform density functional theory (DFT) cal-
culations on bilayer AgF2. As shown in Fig. 2(a), the
two energy minima with different translations to1 (0.5,
-0.16) and to2 (0.5, 0.16) denote the ground states of
stacked AgF2 bilayers. We denote these two bilayer
configurations as B1 and B2, which are stacked with
Ô1 = {m001|(0.5, −0.16)} and Ô2 = {m001|(0.5, 0.16)}
respectively, as shown in Fig. 2(b). Their interlayer mag-
netic coupling includes two types: type-I and type-II,
as shown in the insets of Figs. 2(c) and 3(a), respec-
tively. DFT calculations show that type-I is the magnetic
ground state, with an energy 0.26 meV/f.u. lower than
that of type-II. The stacking breaks inversion symmetry
and transforms the layer group p21/b11 of the monolayer
into pb11 of the bilayer, inducing a polarization P in B1

(B2) configuration [see Fig. 2(c)]. B1 and B2 are con-
nected byN− = m001, enforcing exactly opposite P with
the same amplitude (1.66 pC/m) for B1 and B2 config-
urations. We consider the sliding path between B1 and
B2 shown in Fig. 2(a), where the intermediate state,
located at the midpoint to0 = (0.5, 0), is stacked by
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FIG. 2. (a) Energy distribution of AgF2 bilayers stacked with
the same O = m001 but different translations, with the ground
state energy as the reference. The ground states are located at
points to1 (0.5, -0.16) and to2 (0.5, 0.16). The gray dotted line
between to1 and to2 denotes the ferroelectric switching path,
with the midpoint to0 (0.5, 0). The bilayers located at to0, to1
and to2 are denoted as B0, B1 and B2, respectively. (b) The
configurations of B1 and B2. (c) The energy barrier and the
evolution of out-of-plane polarization along the path in (a).
The inset shows the identical magnetic configurations of B1

and B2, where red and blue arrows denote opposite magnetic
moments. (d) The two highest occupied bands of B1 (left)
and B2 (right), calculated without considering SOC. The red
and blue colors denote opposite spins. The Fermi level is set
to zero. The inset displays the Brillouin zone, where the high
symmetry points S1 = ( 1

2
, 1
2
) and S2 = (− 1

2
, 1
2
).

Ô0 = {m001|(0.5, 0)} and denoted as B0. B0 is a high-
symmetry state with the layer group pb21a, where the
point group symmetry R− = m001 enforces a zero P [Fig.
2(c)]. From the perspective of sliding-induced symmetry
breaking, interlayer sliding of B0 breaks m001 symmetry
and induces P in B1 (B2). Indeed, B1 and B2 are dual
configurations connected by N− = m001, while B0 is the
self-dual configuration with m001 symmetry [57]. Hence,
taking to0 as the origin, P as a function of interlayer
translation to is odd, while the energy as a function of
translation is even, as shown in Fig. 2(c). The energy
barrier for the ferroelectric switching from B1 to B2 is

FIG. 3. (a) The energy barrier and the evolution of out-of-
plane polarization between B1s and B2s along the same path
as that between B1 and B2. B0s, B1s and B2s refers to the
bilayer B0, B1 and B2 under 4% biaxial tensile strain, respec-
tively. The inset shows the identical magnetic configurations
of B1s and B2s, where red and blue arrows denote the mag-
netic moment along [100] and [100] directions, respectively.
(b) The Berry curvatures of B1s and B2s in the first Brillouin
zone. It is calculated by summing all the occupied states be-
low 60 meV relative to the valence band maximum. (c) The
anomalous Hall conductivities of B1s and B2s. The valence
band maximum is set to zero.

17.1 meV/f.u.

In contrast to inversion symmetry breaking, stacking
preserves the {m100| 12 ,

1
2} symmetry for B1 (B2) and thus

inherits the altermagnetism, as shown in Fig. 2(d). The
maximal spin splitting is 51 meV for the two highest oc-
cupied bands. We assume the magnetization direction of
each atom remains unchanged under interlayer sliding.
B1 and B2 with the type-I magnetic configuration are
connected by N−

s = {2⊥||m001}, which enforces them to
have opposite k-dependent spin polarizations [Fig. 2(d)].
We denote the energy splitting between the two spin
channels at a certain k point as ∆Ek = E↑

k−E↓
k. The in-

termediate state B0 exhibits spin degeneracy enforced by
its spin point group symmetry {2⊥||m001}. Taking to0 as
the origin, similar to P , ∆Ek as a function of interlayer
translation is odd, as shown in Fig. S1 of the Supplemen-
tal Material [51]. Therefore, the spin polarization can be
switched by sliding ferroelectricity in bilayer AgF2.

We next consider the SOC effect and discuss AHE in
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B1 and B2. By comparing the energies of B1 (B2) with
the Néel vector aligned along [100], [010] and [001] direc-
tions, we find that the easy axis is along the [100] direc-
tion, as shown in the inset of Fig. 2(c). B1 (B2) has the
magnetic point group m′ = {1,m′

100}, which permits a
nonzero anomalous Hall conductivity σxy. However, con-
sidering SOC, B1 and B2 are connected by N−

m = m001,
which does not switch the sign of Berry curvature and
thus cannot switch the AHE. Switching AHE requires
N−

m = m′
001, which necessitates tuning the magnetic

ground state of B1 (B2) to the type-II configuration, as
shown in the inset of Fig. 3(a).

Strain is an efficient method to tune the magnetic
phase [58–60]. We apply biaxial tensile strain to B1 and
B2, inducing a magnetic ground-state phase transition
from type-I to type-II when the strain reaches or exceeds
3%, as detailed in Table S4 of the Supplemental Material
[51]. We take AgF2 bilayers under a 4% biaxial ten-
sile strain as an example, and denote B0s, B1s and B2s

as the bilayer B0, B1 and B2 under strain, respectively.
For both B1s and B2s, the type-II magnetic configura-
tion is the ground state, with an energy 0.18 meV/f.u.
lower than type-I. The easy axis remains along the [100]
direction [see the inset of Fig. 3(a)]. While the slid-
ing ferroelectricity is preserved under strain, as shown in
Fig. 3(a). B1s and B2s exhibit opposite anomalous Hall
conductivities as their connection operator N−

m = m′
001

reverses the sign of Berry curvature [see Figs. 3(b) and
3(c)]. The intermediate state B0s exhibits a vanishing
AHE, enforced by its magnetic point group symmetry
m′

001. For the anomalous Hall conductivity at a fixed
Fermi energy, taking to0 as the origin, its dependence on
interlayer translation is odd, as a result of N−

m = m′
001

(see Fig. S2 in the Supplemental Material [51]). These
results indicate that the AHE can be controlled by the
sliding ferroelectricity in strained bilayer AgF2.

Summary and discussion.— In summary, we propose
a general rule for controlling unconventional magnetism,
including altermagnetic spin splitting and AHE, via slid-
ing ferroelectricity in bilayer systems. We reveal that
the connection operator determines the magnetoelectric
coupling, and identify all the possible altermagnetic bi-
layers that enable ferroelectric control of spin polariza-
tion or AHE. In fact, the general stacking rule is not
only applicable to collinear altermagnets but also to non-
collinear or noncoplanar spin configurations. Addition-
ally, the rule can be extended beyond spin polarization
and AHE to other spin-dependent properties that can be
switched by the connection operator. Our work provides
a general strategy for designing unconventional multifer-
roic bilayer systems and developing energy-efficient anti-
ferromagnetic spintronic devices.
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