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Symmetry, microscopy and spectroscopy 
signatures of altermagnetism

Tomas Jungwirth1,2 ✉, Jairo Sinova3, Rafael M. Fernandes4,5, Qihang Liu6, Hikaru Watanabe7,8, 
Shuichi Murakami9,10,11, Satoru Nakatsuji7,12,13,14 & Libor Šmejkal1,8,15 ✉

The recent discovery of altermagnetism was in part motivated by the research of 
compensated magnets towards highly scalable spintronic technologies. Simultaneously, 
altermagnetism shares the anisotropic higher-partial-wave nature of ordering with 
unconventional superfluid phases, which have been at the forefront of research for 
the past several decades. These examples illustrate the interest in altermagnetism 
from a broad range of science and technology perspectives. Here we review the 
symmetry, microscopy and spectroscopy signatures of altermagnetism. We describe 
the spontaneously broken and retained symmetries that delineate altermagnetism as 
a distinct phase of matter with d-, g- or i-wave compensated collinear spin ordering.  
In materials ranging from weakly interacting metals to strongly correlated insulators, 
the microscopic crystal-structure realizations of the altermagnetic symmetries 
feature a characteristic ferroic order of anisotropic higher-partial-wave components 
of atomic-scale spin densities. These symmetry and microscopy signatures of 
altermagnetism are directly reflected in spin-dependent electronic spectra and 
responses. We review salient band-structure features originating from the altermagnetic 
ordering, and from its interplay with spin–orbit coupling and topological phenomena. 
Throughout, we compare altermagnetism with traditional ferromagnetism and  
Néel antiferromagnetism, and with magnetic phases with symmetry-protected 
compensated non-collinear spin orders. We accompany the theoretical discussions 
with references to relevant experiments.

Altermagnetism is a recently identified ordered phase of electrons 
and their spins in condensed matter1,2. The distinctive signatures of 
altermagnetism can be illustrated on simplified model structures, 
shown in Fig. 1. As a reference, ferromagnetism, carrying a finite net 
magnetization, is represented by a parallel (ferroic) alignment of atomic 
magnetic dipoles formed by electron spins in the position space of the 
crystal. The corresponding electronic spectrum in the momentum 
space is split into majority and minority channels with opposite spin. 
In contrast, altermagnetism with its compensated spin ordering is 
illustrated in Fig. 1 by a model highlighting the presence of an aniso-
tropic component of the local spin density whose sign alternates on 
the atomic scale. The ferroic crystal order of these local anisotropic 
spin-density components has its counterpart in the alternating-sign 
spin polarization in the momentum space. The corresponding elec-
tronic spectrum has a form of equal-size, anisotropically distorted 
and mutually rotated energy isosurfaces of the opposite spin channels, 
intersecting at spin-degenerate nodes1–3.

The microscopic mechanism of the spontaneous spin ordering in 
magnetic ground states, including altermagnetic, is due to an inter-
play of the spin-independent electron–electron Coulomb interac-
tion in the many-body Hamiltonian with the Pauli exclusion principle. 
The mechanism is commonly referred to as the exchange interaction. 
Owing to a large energy scale of typical exchange interactions, the 
spin orders tend to be robust. In contrast, microscopic mechanisms 
by which the isotropic electron–electron Coulomb interaction can 
lead to ordered ground states with a spontaneously developed anisot-
ropy have been considered to be of a more subtle correlated nature4. 
Here the prominent examples are the unconventional d-wave super-
conductivity in cuprates or the p-wave superfluidity of 3He (Fig. 1c,d). 
Altermagnetism stands apart from these anisotropic ordered phases 
driven by the subtle correlated instabilities in metallic Fermi fluids4. The 
anisotropic spin ordering in altermagnets is commonly stabilized by 
a robust microscopic mechanism. It originates from a direct interplay 
of, on the one hand, the exchange interaction and, on the other hand, 
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the single-particle electron interaction with the ionic potential of the 
underlying crystal lattice with a suitable symmetry1,2,4. As a result, alter-
magnetism can form at ambient conditions and in a variety of metallic, 
as well as insulating, materials. This has opened a range of research 
directions exploring the extraordinary properties and responses ena-
bled by altermagnetism, and the synergies of altermagnetism with 
other condensed-matter phases1,2,5–30. (For more details on the research 
context and additional references, see Supplementary information).

In the following sections, we review the distinctive symmetry, micros-
copy and spectroscopy signatures of the altermagnetic ordering that 
underpin the emerging broad research of this recently identified phase 
of matter. For other review, perspective or commentary articles focus-
ing on altermagnetism in the context of the symmetries of compensated 
magnets, the anomalous Hall effect and other spintronic responses, 
the initial experimental research, or discussing distinctions between 

altermagnetism and correlated metallic and superfluid instabilities of 
Fermi liquids, we point to refs. 2,4,31–35.

Symmetry signatures
The single-particle interaction term of the electronic Hamiltonian 
owing to the ionic potential of the crystal lattice has no explicit depend-
ence on the electron spin. It is, therefore, invariant under the symme-
try group SO(3) of all continuous spin-space rotations. In the real space, 
the crystal potential obeys symmetries of the crystallographic group 
G. The many-body term in the Hamiltonian owing to the electron– 
electron interactions has also no explicit dependence on spin, that is, 
has the spin-space SO(3) symmetry, plus it is isotropic in the real space. 
The normal phase of the electronic system determined by these inter-
action terms retains the full symmetry, Z G× SO(3) ×T

2 , of the cor
responding Hamiltonian. Here we also explicitly included the 
time-reversal (T) symmetry via the Z T

2  group containing T and the 
identity.

Conventional collinear ferromagnetism, represented by the model 
spin arrangement on the crystal in Fig. 1a, spontaneously breaks (some) 
spin-space SO(3) symmetries and the T symmetry. Simultaneously, the 
retained symmetries in the ordered ground state are given by the spin 
group ⋉Z GSO(2) ×C T

2
2 . Here the C2T symmetry in Z C T

2
2  combines T 

with a two-fold spin-space rotation C2 around an axis orthogonal to the 
collinearity axis of spins, and SO(2) is a group of continuous spin-space 
rotations around the collinearity axis.

The altermagnetic ordering1 (Fig. 1b) also spontaneously lowers the 
Hamiltonian’s Z × SO(3)T

2  symmetry to the ⋉Z SO(2)C T
2

2  symmetry of 
the ground state. (This part of the spontaneous symmetry lowering is 
common to all collinear spin-ordered phases1,36,37). In contrast to fer-
romagnetism, however, the altermagnetic ordering retains only sym-
metries of a halving subgroup H of the crystallographic group G. The 
other half of the symmetries contained in G − H are spontaneously 
broken on their own, whereas the altermagnetic ground state retains 
symmetries combining the crystallographic transformations from 
G − H with the spin-space rotation C2 around an axis orthogonal to the 
spins. In the case of the altermagnetic order, G − H contains real- 
space rotation transformations (proper or improper and symmorphic 
or non-symmorphic) and does not contain the real-space inversion 
(parity P) or a translation (t). With this constraint, the altermagnetic- 
ordering class is unambiguously and exclusively delineated by the spin 
groups of the form1, ⋉ ∥ ∥Z E H C G HSO(2) × ([ ] + [ − ])C T

2 2
2 . (Here E is the 

spin-space identity and the spin-space and real-space symmetry trans-
formations are on the left and right of the double bar in the square 
bracket, respectively).

The [C2∥G − H] symmetries imply that the altermagnetic spin order-
ing is compensated, that is, that the integrated spin-up and spin-down 
densities have the same magnitude. The [E∥H] term implies that in 
each spin channel, the spin density is anisotropic. The altermagnetic 
spin ordering retains the symmetries of the halving subgroup H, while 
spontaneously breaking the remaining G − H rotation symmetries.

Before we turn to the discussion in the following sections on how 
the altermagnetic spin-group symmetries are reflected in the position- 
space microscopy and momentum-space spectroscopy signatures,  
we conclude this section with a brief comment on the physical dis-
tinction between symmetry breaking by the spin ordering and the 
spin–orbit coupling.

The spin ordering can occur in ground states of many-body systems 
of interacting electrons by spontaneously breaking the spin-space 
SO(3) symmetry of the spin-independent crystal-potential and  
the electron–electron interaction terms in the Hamiltonian1,38–41. 
We note here that the corresponding spin-ordered ground state is 
degenerate as different ordered states related by any spin-rotation 
transformation from the SO(3) symmetry group of the Hamiltonain 
have the same energy.
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Fig. 1 | Ferromagnetism and altermagnetism versus conventional and 
unconventional superfluidity. a, Cartoon of uncompensated (M ≠ 0) 
ferromagnetism with a parallel (ferroic) alignment of atomic magnetic dipoles 
in the position space of the crystal and corresponding majority-spin and minority- 
spin energy isosurfaces in the momentum space preserving the crystallographic 
point-group rotation symmetry (s-wave). M labels magnetization, and k x and ky 
are components of the electron momentum. b, Cartoon of compensated (M = 0) 
altermagnetism with depicted decomposition of the local anisotropic spin 
density1–3 into a dipole (circle with arrow) and a higher-partial-wave (d-wave) spin- 
density component. Cyan and magenta colours mark opposite spin polarizations. 
The higher-partial-wave (d wave) component is ferroically ordered on the 
crystal. The depicted model is a 2D Lieb lattice7,8,113,114. The momentum- 
space spin-up and spin-down energy isosurfaces show the corresponding 
anisotropic (d wave) order breaking the T symmetry1–3. They intersect at 
spin-degenerate nodes. c, Cartoon of the isotropic scalar order parameter and 
the quasiparticle gap function (filled area) on the Fermi surface for conventional 
s-wave superfluidity (superconductivity). d, Top: anisotropic order parameter 
(arrows) and the quasiparticle gap (filled area) for unconventional p-wave 
superfluidity. The p-wave order parameter is a collinear vector in the spin space, 
reminiscent of collinear altermagnetism, but has odd parity. Bottom: anisotropic 
order parameter (±) and the quasiparticle gap (filled area) for unconventional 
d-wave superfluidity. The d-wave order parameter has even parity, reminiscent 
of altermagnetism, but is a scalar in the spin space (no spin order). For a  
detailed comparison between altermagnetism and unconventional superfluidity, 
see ref. 4.
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The spin–orbit coupling refers to single-particle interaction term(s) 
in the relativistic Hamiltonian that explicitly depend on the electron 
spin and that couple the spin-space and the real-space degrees of free-
dom42. In the case of the spin–orbit coupling, the spin-space SO(3) 
symmetry is thus already broken in the Hamiltonian of the electronic 
system. This makes the physical nature of the symmetry breaking by 
the spin–orbit coupling principally distinct from the spontaneous sym-
metry breaking by the spin ordering. Albeit typically weak compared 
with the crystal-potential and electron–electron interaction terms in 
materials without heavy elements, the spin–orbit coupling can have 
important consequences for equilibrium and non-equilibrium proper-
ties of the electronic systems. For example, in normal states of systems 
with broken P symmetry it can lift the spin degeneracy of the electronic 
spectra, or in magnets it can lift the degeneracy of the spin-ordered 
ground states43,44. It can also facilitate a range of topological band 
structure and transport phenomena45–51.

The primary focus of this Review is on the physics associated with the 
altermagnetic spin ordering, but we also give examples of the interplay 
of the altermagnetic ordering with the spin–orbit coupling. On the 
symmetry level, the effects of the spin–orbit coupling are disentangled 
from the spin-ordering physics by employing the spin-group and the 
magnetic-group formalisms. In the spin-group formalism1,2,36,37,52–69, 
focusing on the spin ordering alone, the symmetry transformations 
applied simultaneously in the spin space and in the real space can be 
different, reflecting the absence of any explicit spin dependence in  
the crystal-potential and the electron–electron interaction terms in the 
Hamiltonian. In contrast, the magnetic-group formalism44,70 considers 
only a simultaneous application of the same symmetry transforma-
tions in both the spin space and the real space, reflecting the explicit 
coupling of the spin-space and the real-space degrees of freedom in 

the relativistic spin–orbit-coupled Hamiltonian. The complementary 
merits of the two symmetry formalisms are illustrated in Box 1.

Microscopy signatures
In this section, we look how the altermagnetic spin-group symme-
tries are realized on the microscopic level in representative crystal 
structures, and discuss the microscopic physics of ordering in alter-
magnets. Figure 2a shows the arrangement of anisotropic atomic 
spin densities in an altermagnetic rutile crystal obtained from micro-
scopic theory3. These local spin densities can be decomposed into 
s-wave (dipole) components with antiparallel alignment between 
neighbouring atoms, and d-wave components aligned ferroicly on 
the crystal lattice, as schematically indicated in Fig. 2a. The d-wave 
spin-density components correspond to the d-wave symmetry of 
anisotropic exchange interactions in the rutile crystal lattice56. The 
ferroic order of the local d-wave spin-density components gener-
ates the T-symmetry-breaking electronic structure and responses, 
reminiscent of the effects of the ferroic order of local dipoles in con-
ventional ferromagnets3. In contrast to the ferroicly ordered dipoles, 
however, the higher-partial-wave ferroic order does not generate a 
net magnetization and leads to the characteristic anisotropy of the 
phenomena observed in altermagnets.

We note that experimental signatures of the magnetic ordering in 
RuO2, a metallic rutile crystal considered among this class of alterma-
gnetic candidates from the early theoretical studies3, are currently a 
matter of debate71–88. These seemingly controversial reports can be 
possibly explained by the magnetic order in ruthenates, including RuO2, 
being fragile with respect to impurities, disorder or strain82. In other 
insulating rutile crystals2,89–93, such as altermagnetic NiF2 mentioned 

Box 1

Comparison of spin groups and magnetic groups
In the figure, we compare the spin groups1,36 of a collinear 
uncompensated spin ordering in Fe, a collinear compensated spin 
ordering in (altermagnetic) NiF2, and a non-collinear coplanar 
compensated spin ordering in Mn3Sn, with the magnetic groups200 
of the three structures. The spin group is a direct product of the 
so-called spin-only group and the so-called non-trivial spin 
group1,36,37. The spin-only group distinguishes the collinear (Fe and 
NiF2) from the non-collinear coplanar (Mn3Sn) spin orders, where  
in the former case the spin-only group is given by �Z SO(2)C T

2
2   

and in the latter case by Z C T
2

2 . The non-trivial spin group for the 
uncompensated spin ordering (Fe) has no term combining a 
crystallographic transformation with a spin rotation. In contrast, 
such a combined transformation is present in the case of the 
compensated spin ordering (NiF2, Mn3Sn).

Unlike the spin groups, the magnetic groups for all three 
structures are the same. This illustrates, among other features, 
that the magnetic groups do not generally distinguish between 
the collinear and the non-collinear (coplanar or non-coplanar) 
magnets. In addition, the specific magnetic group of the three 
structures belongs to the so-called ferromagnetic groups, which 
allow for a net magnetization. All three structures are thus rendered 
as uncompensated by the magnetic group. A comparison with the 
respective spin groups shows that in the case of NiF2 and Mn3Sn, the 
net magnetization is of the relativistic spin–orbit-coupling origin, 
whereas the spin ordering alone yields a zero net magnetization 
in the non-relativistic limit protected by the spin-group symmetry. 
In the case of Fe, a non-zero net magnetization is allowed without 
the spin–orbit coupling by the spin-group symmetry. All three 

magnetic structures in the figure have spin-group symmetries 
that allow for spin-split electronic spectra in the absence of the 
spin–orbit coupling. In general, spin-group symmetries (and not 
magnetic-group symmetries) determine whether and at what 
momenta the non-relativistic band structure can be spin split, 
or whether spin-degeneracy of the non-relativistic bands is 
symmetry-enforced across the whole Brillouin zone.

Box Fig. 1 | Spin groups and magnetic groups. Examples of collinear or 
non-collinear and compensated or uncompensated spin ordering with 
denoted corresponding spin-only group, non-trivial spin point group and 
magnetic point group. The middle column represents altermagnetism.
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in Box 1, the experimental signatures of the compensated collinear 
magnetic order are well established.

An analogous decomposition of the local atomic spin densities 
applies to semiconducting and metallic room-temperature alterma-
gnets MnTe and CrSb (ref. 94), which have become workhorse materials 
in theoretical and experimental research of altermagnetism1,2,55,95–109. 
In these crystals, the antiparallel alignment of local atomic dipoles is 
complemented by the ferroic order of local g-wave components of the 
anisotropic spin density94, as schematically indicated in Fig. 3a. It is 
noted that the corresponding anisotropic exchange interactions were 
predicted56 and experimentally demonstrated110 in MnTe to generate 
alternating chiral splitting of the magnon spectra.

Recently, the family of experimentally confirmed altermagnets has 
been extended by KV2Se2O and RbV2Te2O layered crystals111,112, shown 
in Fig. 3g. They feature atomic and spin arrangements corresponding 
to the two-dimensional (2D) Lieb-lattice model of d-wave alterma-
gnetism7,8,113,114, introduced in Fig. 1b. Lieb-lattice altermagnetism was 
also shown to be realized in the Mott insulating compound La2Mn2Se2O3 
(ref. 115).

Remarkably, the altermagnetic symmetries can be realized by the 
ferroic order of the local d-wave (or higher even-parity-wave) spin densi-
ties on magnetic atoms without any local atomic dipole components94. 
Microscopic calculations identified such a pure form of atomic d-wave 
altermagnetism94 in a Mott-insulator Ba2CaOsO6 (refs. 94,116). This 
underlines the microscopic distinction of altermagnetism from con-
ventional Néel antiferromagnetism, where the latter has a characteristic 

antiferroic order (tT symmetry) of atomic dipole moments on an even 
number of crystal sublattices117 (Fig. 2f).

Other microscopic mechanisms include the realization of the alter-
magnetic symmetries by crystal lattice deformations7,118,119. Although 
in the unperturbed crystal the opposite spin densities are related by 
one of the symmetries excluding the altermagnetic order (transla-
tion or inversion), the deformation, such as a twist of crystal planes, 
breaks these symmetries while obeying the altermagnetic spin-group 
symmetry.

There can also be cases where the role of symmetries of the single- 
particle potential of the ionic crystal lattice are complemented by elec-
tronic correlations in the formation of the altermagnetic phase. Here 
the altermagnetic phase is enabled by correlation-induced orbital 
ordering, which lowers the symmetry of the crystallographic group, 
compared with the symmetry of the ionic lattice. Together with the 
spin ordering by the exchange interaction, the phase then falls into 
the altermagnetic spin-group class120,121.

Apart from this microscopic mechanism, the role of electronic cor-
relations in promoting or affecting altermagnetism has been studied 
in various contexts120,122–125, including the strongly coupled regime 
where the interaction strength is comparable to the bandwidth126,127. 
As the strongly correlated Mott-insulator crystals frequently display 
a compensated antiparallel magnetic order, several Mott insulating 
materials with appropriate spin symmetries have been put forward as 
altermagnetic candidates. Specifically, a wide class of Mott insulating 
perovskites, such as the manganite CaMnO3 and the titanate LaTiO3 
(refs. 1–3,23,121,128), have been identified as platforms to realize and 
investigate altermagnetism in the regime of strong correlations. In 
these compounds, the oxygen octahedra rotate to accommodate the 
cation, lowering the ideal cubic symmetry of the perovskite down to 
orthorhombic, which essentially changes the spin group to alterma-
gnetic. In different contexts, earlier studies found that the octahedra 
rotation in the perovskites can directly impact orbital degrees of free-
dom, which in turn affect the magnetic interactions90,129. Subsequent 
studies made the observation of the T-symmetry-breaking electronic 
structure and responses, and the identification of altermagnetism in 
these systems1–3,23,121,128.

Similarly, Mott insulating states realized in oxides with other  
Ruddlesden–Popper phases, such as the cuprate La2CuO4 (ref. 1) and the 
nickelate La3Ni2O7 (ref. 23), possess the spin-symmetry requirements 
to display altermagnetism. Besides three-dimensional (3D) oxides, 2D 
organic charge-transfer salts can also realize a Mott insulating alterma-
gnetic phase owing to the fact that their organic molecules can form 
an arrangement similar to the Shastry–Sutherland lattice127.

Spectroscopy signatures
An unconventional spin splitting that breaks the T symmetry in 
theoretical band structures of compensated magnets was initially 
reported in several coplanar130, non-coplanar131 and collinear3 mag-
nets. Employing the spin-group formalism1,36,52–69,132 then enabled to 
disentangle by symmetry the spin-ordering and the spin–orbit coupling 
contributions to this unconventional spin splitting; the same applies 
to other previous theoretical reports of non-relativistic electronic 
structures with momentum-dependent spin splitting in compensated  
magnets89–92,133,134.

Within the collinear magnets, the spin groups allowed the delineation 
of altermagnetism, as discussed in the previous sections. Numerous 
candidate materials with altermagnetic band structures have been 
identified based on the spin groups when analysing, for example, 
the published magnetic structures in the MAGNDATA database on 
the Bilbao Crystallographic Server1,2,32,57,69,135. Besides the numerous 
3D inorganic crystals, the spin groups also enabled to establish the 
altermagnetic symmetry in the spectra of earlier studied or recently 
identified 2D2,7,8,54,136–140 or organic127,134 materials.

Broken tT symmetry tT symmetric

Compensated spin ordering
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With
SOC
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SOC
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Fig. 2 | Magnets with compensated spin ordering. a, Left: altermagnetic 
ordering on a rutile crystal (RuO2, FeF2 and so on)1–3 with anisotropic atomic spin 
densities schematically decomposed into antiparallel isotropic s-wave (dipole) 
and ferroically ordered anisotropic d-wave components. Right: corresponding 
d-wave order on the schematic momentum-space energy isosurfaces. b, Position- 
space (left) and momentum-space (right) cartoons of a non-collinear coplanar 
even-parity magnetic order represented by Mn3Sn (refs. 148,158). c, Non-coplanar 
magnetic order in position space with a corresponding spin-degenerate 
electronic structure in the momentum space represented, for example, by 
CoM3S6 (M = Ta or Nb)64,67,132,151,199. d, Non-collinear coplanar magnetic order in 
the position space with corresponding odd-parity (p wave) collinear spin order 
in the momentum space represented by CeNiAsO (ref. 59). e, Non-collinear non- 
coplanar magnetic order in the position space with corresponding odd-parity 
non-collinear spin order in the momentum space represented by Ce3InN  
(ref. 60). f, Conventional collinear Néel antiferromagnetism with the antiferroic 
order (tT symmetry) of opposite atomic dipole moments on an even number of 
crystal sublattices117, and corresponding spin-degenerate electronic structure 
in the momentum space. Cartoons in all panels are for non-relativistic electronic 
structures. Whether or not the anomalous Hall effect is allowed (AHE or no 
AHE), and whether with or without the relativistic spin–orbit coupling (with or 
without SOC) is also indicated for all panels.
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Recently, the unconventional T-symmetry-breaking spin splitting in 
the compensated magnets was reported by angle-resolved photoemis-
sion spectroscopy (ARPES) measurements in the g-wave altermagnets 
MnTe, CrSb or CoNb4Se8 (refs. 97–100,103–109; Fig. 3a–f), and the 
d-wave altermagnets KV2Se2O or RbV2Te2O (refs. 111,112; Fig. 3g–i). 
Unconventional spin splitting was also experimentally observed 
by ARPES measurements in a non-collinear non-coplanar compen-
sated magnet MnTe2 (ref. 141; Fig. 3j–l). In contrast to the collinear 

altermagnetic ordering, here the non-collinear ordering generates a 
corresponding non-collinear spin texture in the band structure of MnTe2.

Below we start with a discussion of the electronic structure of alter-
magnets in the limit of zero spin–orbit coupling. This is followed by 
a comparison with non-relativistic electronic structures of several 
representative magnets with compensated non-collinear spin orders. 
Finally, we include a discussion of relativistic and topological effects 
in the altermagnetic band structures.
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magnetic crystal structure with grey spheres representing Te atoms. Cyan and 
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decomposed into isotropic dipole (sphere with arrow) and anisotropic g-wave 
components. Cyan and magenta colours mark opposite spin polarizations.  
b, Density functional theory (DFT) spin-polarized band structure along a kz = 0 
path in the Brillouin zone in the kz = 0 nodal plane with the spin–orbit coupling 
(SOC) turned off. c, The same as in b but with SOC turned on. d,e, The same as in b 
and c, respectively, but along a kz ≠ 0 path in the Brillouin zone away from the  
four nodal planes of the g-wave altermagnetic order. sy in panels d,e labels the 
in-plane spin component parallel to the Néel vector in the position space, while 
sz in panel c labels the out-of-plane spin component orthogonal to the Néel 
vector. f, ARPES measurements of the spin-split band structure corresponding 
to the DFT in c. g, KV2Se2O magnetic crystal structure with local anisotropic 
spin densities on V atoms. K atoms, purple; O atoms, red; Se atoms, green.  
h, Calculated spin-resolved Fermi surface at kz = 0 with green dashed lines 
indicating the momentum locations of cuts 1 and 2 in the Brillouin zone. i, ARPES 

intensity plots showing the band dispersion along cuts 1 and 2. Magenta and 
cyan dashed curves are calculated spin-up and spin-down bands. Magenta and 
cyan filled areas highlight the momentum-dependent spin-up and spin-down 
polarizations calculated by the asymmetry of the measured spin-up and spin- 
down signals. E and EF denote energy and Fermi level, respectively, and k[110] and 
k[1–10] are in-plane momenta. j, Crystal structure of MnTe2. The compensated non- 
coplanar magnetic configuration on Mn atoms is indicated by the red arrows 
(yellow spheres represent Te atoms forming octahedra around Mn atoms). k, DFT- 
derived, spin-resolved k x–ky map at 21.2 eV and at binding energy EB = 0.45 eV. 
Magenta arrows show in-plane direction of the spin; the darkness of the arrows 
shows the magnitude of in-plane spin polarization; the colour of the bands 
shows the magnitude of the out-of-plane Sz polarization. The O–A–B–C plane  
is the kz = −0.2π/c plane. l, ARPES-measured, Sx-resolved cuts 1 and 2. The k 
positions of cuts 1 and 2 are marked in k. Panels adapted with permission from: 
b–f, ref. 97 under a Creative Commons licence CC BY 4.0; h,i, ref. 111, Springer 
Nature Limited; j–l, ref. 141, Springer Nature Limited.
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Non-relativistic spectroscopy signatures
The symmetry and microscopy signatures of altermagnetism, described 
in previous sections, are directly reflected in the spin-dependent band 
structure in the momentum space in the limit of zero relativistic spin–
orbit coupling. The symmetries of the collinear spin-only group 
Z SO(2)C T

2
2 ⋉ , together with T acting in both the spin space and the real 

space, imply an effective P symmetry in the momentum space. The 
spin-dependent electronic structure in the momentum space for the 
altermagnetic order thus has the P symmetry, regardless of whether 
the magnetic crystal has or has not the P symmetry in the position 
space1.

In total, there are ten non-trivial P-symmetric spin point groups 
(ten non-trivial spin Laue groups) of the form introduced above, 
([E∥H] + [C2∥G − H]), describing the spin- and momentum-dependent 
band structures in the non-relativistic limit for all altermagnetic spin 
orders on crystals1. Apart from the spin degeneracy at the Γ point, the 
symmetries of a first class of altermagnets, described by four out of the 
ten non-trivial spin Laue groups, protect spin degeneracy at two nodal 
surfaces in the 3D Brillouin zone crossing the Γ point. In the second 
class, corresponding to another four non-trivial spin Laue groups, there 
are four symmetry-protected spin-degenerate nodal surfaces. A third 
altermagnetic class, containing the remaining two non-trivial spin Laue 
groups, has six spin-degenerate nodal surfaces protected by symmetry. 
Outside these nodal surfaces, the spin symmetries allow for lifting 
the spin degeneracy, resulting in even-parity T-symmetry-breaking 

electronic spectra in the three altermagnetic classes of the d-, g- or 
i-wave form, respectively1. The d-, g- or i-wave spectra in the momentum 
space correspond to the ferroicly ordered d-, g- or i-wave spin-density 
components in the position space of the altermagnetic crystals, dis-
cussed in the previous section94. We note that compared with the 10 
spin Laue1 (37/422 point1/space4,57) groups of altermagnets, there are 11 
spin Laue (32/230 point/space) groups corresponding to the collinear 
ferromagnetic ordering with split majority-spin and minority-spin 
bands, and 11 spin Laue (53/769 point/space) groups of the collinear 
antiferromagnetic ordering with spin-degenerate bands1,4,57.

The possibility of a strong T-symmetry-breaking spin polarization 
in the non-relativistic electronic structure away from the nodal sur-
faces, with spin splitting of the bands on an electronvolt scale, was 
pointed out in the initial theoretical studies of the altermagnetic 
phase of RuO2 (refs. 3,133; Fig. 4b). Another distinctive band-structure 
feature in the limit of zero spin–orbit coupling, introduced in theo-
retical studies of several altermagnetic candidates, is the presence 
of spin-polarized valleys53,54,136,138,142 (Fig. 4c). Unlike in the relativistic 
spectra of non-magnetic systems, the non-relativistic band structures 
of altermagnets can host these spin-polarized valleys at T-invariant 
momenta.

Comparison with non-collinear compensated magnets
Using the spin symmetries, we now discuss the salient features of the 
altermagnetic electronic structure in the limit of zero spin–orbit cou-
pling, highlighted in Fig. 2a, in comparison with different representa-
tive non-collinear magnets with a compensated spin order protected 
by spin symmetry, illustrated in Fig. 2b–e. All compensated magnetic 
structures in Fig. 2a–e break the PT symmetry. Recall that the PT sym-
metry protects Kramers spin degeneracy of the electronic structure 
across the whole Brillouin zone, both without and with the spin–orbit 
coupling143–146.

We note that non-collinear spin arrangements on crystals can origi-
nate from, for example, frustrated exchange interactions in the absence 
of spin–orbit coupling, or from Dzyaloshinskii–Moriya interaction. 
(Even in the latter case where spin–orbit coupling contributes to the 
stabilization of the non-collinear spin ordering, the spin-ordering sym-
metry can be described by spin-group symmetries).

In Fig. 2b, we show the Mn3Sn member of the intensely studied Mn3X 
family of non-collinear compensated magnets31,67,130,147–170. The right 
panel of Fig. 2b shows a cartoon of the even-parity T-symmetry-breaking 
electronic structure of Mn3Sn whose compensated magnetic crystal 
breaks, besides the PT symmetry, also the tT symmetry (left panel of 
Fig. 2b). These momentum-space and position-space symmetry char-
acteristics are analogous to the altermagnetic order (Fig. 2a). Unlike 
altermagnetism, however, the spin arrangement on the crystal in Fig. 2b 
is non-collinear (coplanar), resulting in a spin-dependent electronic 
structure with a non-collinear (coplanar) spin texture in the momentum 
space that winds twice along the Fermi surface158. Also in contrast to  
the anisotropic nodal altermagnetic order, and reminiscent of the node-
less ferromagnetic order, the shape of the energy isosurfaces and the 
spin-splitting magnitude do not show a spontaneous anisotropic defor-
mation but preserve the symmetry of the underlying crystal lattice.

In Fig. 2d,e, we show cartoons of non-relativistic spin-dependent 
electronic structures having odd parity and T symmetry59,60,67,171–175. They 
contrast with the so far discussed even-parity T-symmetry-breaking 
spectra of collinear altermagnets and ferromagnets, and the 
non-collinear P-symmetric magnets represented by Mn3Sn. The 
odd-parity T-symmetric type of non-relativistic spin-split spectra in 
the momentum space is due to the broken P symmetry in a non-collinear 
magnetic crystal structure. In addition, it is enabled by the presence of 
the tT symmetry (Fig. 2d,e). This antiferroic order, in which opposite 
atomic magnetic dipoles are related by translation in the crystal lattice, 
contrasts with the ferroic order of the local dipoles in ferromagnets, 
or the ferroic order of the higher even-parity-wave components of 
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from: a,b, ref. 3, AAAS; d, ref. 113, American Physical Society; e–g, ref. 7.
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the local spin density in altermagnets. The momentum-space elec-
tronic spectra generated by the antiferroic order of the tT-symmetric 
non-collinear magnets in Fig. 2d,e also contrast with the collinear Néel 
antiferromagnets. In the latter case, the tT symmetry together with the 
collinearity in the position space protects the spin degeneracy of the 
even-parity non-relativistic spectra in the momentum space (Fig. 2f).

Figure 2d illustrates the odd-parity magnetism on a non-collinear 
coplanar spin structure in the position space of the crystal. Here the 
tT symmetry together with the coplanar spin-only group Z C T

2
2  results 

in a symmetry [C2∣∣t], combining a real-space translation with a two-fold 
spin-space rotation around the axis orthogonal to the coplanar spins. 
This allows for a compensated magnetic phase with an odd-parity elec-
tronic energy spectrum as a function of momentum, E↑(k) = E↓(−k), 
and a collinear spin polarization in the momentum space with the 
polarization aligned along the above C2 spin-rotation axis59. To highlight 
the combination of the tT-symmetric antiferroic order in the position 
space, reminiscent of the Néel antiferromagnetism, with the collinear 
alternating spin polarization in the momentum space, akin to alterma-
gnetism, this type of odd-parity magnetism was recently dubbed 
antialtermagnetism by some of us4.

It is noted that although the spins are collinear in the momentum 
space, the magnitude of their expectation value can vary with momen-
tum. Remarkably, the spin-polarization axis of the collinear spins in the 
momentum space is perpendicular to the plane of the non-collinear 
coplanar spins in the position space of the crystal. This is to be con-
trasted with the case of the collinear ferromagnetic and altermagnetic 
ordering, for which the momentum-independent spin-quantization 
axis in the non-relativistic band structure is oriented along the spin 
axis in the crystal lattice, and where spin is a good quantum number 
of the electronic states.

Figure 2d illustrates a p-wave order featuring nodal spin-polarized 
energy isosurfaces that, compared with the normal phase, shift 
in opposite directions in the momentum space for opposite spin 
directions. This p-wave antialtermagnetism has been predicted59 
in the P-symmetry-breaking tT-symmetric non-collinear coplanar 
magnet CeNiAsO (ref. 59), and is expected to allow for highly effi-
cient charge-to-spin conversion via, for example, a non-relativistic  
Edelstein effect174.

Figure 2e illustrates an odd-parity electronic structure generated 
by a P-symmetry-breaking tT-symmetric non-coplanar spin arrange-
ment on the crystal of Ce3InN. Because of the absence of the coplanar 
symmetry Z C T

2
2 , the bands have spin textures with momentum- 

dependent magnitude and direction of spins60 (A. B. Hellenes, T.J., J.S. 
& L.Š., manuscript in preparation). These odd-parity T-symmetric spin 
textures in the momentum space of the magnet represent a non- 
relativistic spin-ordering counterpart of the relativistic spin–orbit- 
coupled textures in electronic spectra of non-magnetic crystals with 
broken P symmetry.

Finally, in Fig. 2c, we highlight an example of a non-coplanar compen-
sated magnetic crystal CoM3S6 (M = Ta or Nb) breaking both the tT and 
the PT symmetries. Remarkably, despite the broken tT and the PT sym-
metries, the non-relativistic band structure has a symmetry-protected 
spin degeneracy across the whole Brillouin zone64,67,132,151. This contrasts 
with the spin-split non-relativistic band structures of altermagnets 
(Fig. 2a), the class of non-collinear compensated magnets represented 
in Fig. 2b by Mn3Sn, or the conventional uncompensated ferromagnets, 
all also sharing the broken tT and PT symmetries. The spin degeneracy 
of the electronic spectrum of CoM3S6, illustrated in Fig. 2c, is protected 
by multiple symmetry elements in the spin space group combining a 
real-space translation with a spin-space rotation64,67,132.

We recall that the tT and PT symmetry-breaking compensated 
magnetic orders with spin-split non-relativistic electronic spectra, 
represented in Fig. 2a,b, can generate (in the presence of the spin–
orbit coupling) the anomalous Hall effect3,53,55,75,102,130,147–150,176–179. The 
spin ordering in the non-coplanar compensated magnet CoM3S6, 

illustrated in Fig. 2c, also breaks the tT and PT symmetry and allows 
for the anomalous Hall effect (even in the absence of the spin–orbit 
coupling), whereas the non-relativistic electronic spectrum is spin 
degenerate67,151. Vice versa, Fig. 2d,e shows examples of non-collinear 
compensated spin orders with the tT symmetry and broken PT sym-
metry whose non-relativistic band structure is spin split while the 
anomalous Hall effect is excluded by symmetry (without or with the 
spin–orbit coupling)59. Finally, in the collinear Néel antiferromagnet 
with the tT symmetry and PT symmetry117, illustrated in Fig. 2f, both 
the spin splitting and the anomalous Hall effect (without or with the 
spin–orbit coupling) are excluded by symmetry.

Spin–orbit coupling and topological phenomena
We now focus on spin–orbit coupling and topological phenomena in the 
electronic structure of altermagnets7,10,12,17,97,106,107,113,121,125,180–187. The spin 
degeneracy at the nodal surfaces in the non-relativistic band structure 
of altermagnets can be lifted by the relativistic spin–orbit coupling. 
Among a range of phenomena further discussed in this section, this 
can generate Berry-curvature hotspots (Fig. 4a) and, correspondingly, 
large values of the anomalous Hall effect. This was initially theoretically 
predicted in altermagnetic candidates RuO2 (ref. 3) or FeSb2 (ref. 52), 
and reviewed in detail in ref. 31.

In the following paragraphs, we first give an example of the inter-
play of the spin–orbit coupling with the altermagnetic ordering on 
electronic energy bands of the 3D altermagnet MnTe and a 2D alter-
magnet FeSe (refs. 7,97). The feature that we highlight is a possibil-
ity to realize in altermagnets spin–orbit-coupled band structures in 
which the spin-polarization axis is momentum independent across 
high-symmetry directions, planes or the entire Brillouin zone. This is 
extraordinary given the general form, proportional to s ⋅ (k × E), of the 
spin–orbit-coupling term in the Dirac equation, where s denotes spin, k 
denotes momentum and E denotes electric field. The coupling between 
spin and momentum vectors implies the tendency to form spin textures 
in the electronic structure where the magnitude and direction of spin 
varies with momentum, as frequently observed in ferromagnets or  
(P symmetry breaking) non-magnetic materials.

We contrast these spin textures with the effect of the spin–orbit 
coupling on the kz = 0 nodal plane in altermagnetic MnTe. This mate-
rial has a spin-polarized band structure without spin–orbit coupling 
of the nodal g-wave type, thus showing four nodal planes crossing the 
Γ point1. The spin degeneracy, protected at the nodal planes by the 
symmetry of the non-trivial spin point group 26/2m2m1m, can be lifted 
by the spin–orbit coupling97. Remarkably, the spin–orbit coupling can 
spin-split the bands despite the P symmetry of altermagnetic MnTe. This 
already indicates the distinct phenomenology of spin–orbit-coupling 
effects in altermagnets, compared with conventional spin splitting by 
the spin–orbit coupling, which requires broken P symmetry.

When the Néel vector in MnTe is in the magnetic easy plane (the c 
plane of the MnTe crystal shown in Fig. 3a), the strong g-wave order 
without spin–orbit coupling generates a corresponding in-plane 
spin-polarization component along the Néel vector away from the 
nodal planes. This is complemented on the kz = 0 nodal plane by an 
out-of-plane spin polarization of the spin–orbit-coupled bands, 
whose sign alternates and the polarization axis is independent of the 
in-plane momentum97 (Fig. 3b–d). We point out that the absence of a 
momentum-dependent non-collinear spin texture on the kz = 0 plane 
is realized at energies in the band structure with a strong admixture of 
orbitals from the heavy element Te. Indeed the spin splitting in this part 
of the spin–orbit-coupled band structure reaches large magnitudes on 
the scale of 100 meV (Fig. 3c,f).

The realization of such a common momentum-independent spin-
polarization axis has been a long-sought goal in the research of spin–
orbit-coupling band-structure effects. Besides altermagnets, this was 
only considered in odd-parity spectra of non-magnetic non-centrosym-
metric systems. Here in 3D, the effect was attributed to (approximate) 
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symmetry protection in a vicinity of high-symmetry points of the 
Brillouin zone188. In 2D, it was predicted to occur owing to the presence 
of a mirror symmetry189, or was observed for fine-tuned strengths of 
microscopic Rashba and Dresselhaus spin–orbit coupling190,191.

In altermagnetic MnTe, the collinear spin-polarization on the kz = 0 
nodal plane, with all spins pointing along the normal to the plane, is 
observed in even-parity spectra and is symmetry protected97. Specifi-
cally, the absence of any in-plane spin-polarization component on the 
kz = 0 nodal plane is enforced by the mirror symmetry of the magnetic 
point group m′m′m, where the mirror plane is parallel to the crystal c 
plane. An analogous effect was predicted in a supercell structure based 
on altermagnetic LaMnO3 (ref. 189).

We emphasize that the m′m′m magnetic-group symmetry is only 
present in MnTe for the Néel vector oriented along the c plane in the 
crystal97. In contrast, in the g-wave altermagnet CrSb, which has iden-
tical crystallographic and spin groups as MnTe (ref. 1), the spin–orbit 
coupling leads to the Néel vector easy axis pointing along the crystal c 
axis. It changes the magnetic point group to 6′/m′mm′ with a symmetry 
combining the c-plane mirror with T in CrSb. This CrSb symmetry does 
not enforce the absence of the in-plane spin-polarization component 
in the kz = 0 plane; instead it enforces the absence of the out-of-plane 
spin-polarization component for states with momenta along the 
kx = ky = 0 line (which turns out to be a completely spin-degenerate 
nodal line because of the interplay with another magnetic-group  
mirror symmetry)121.

An additional extraordinary feature of the spin–orbit coupling in 
the MnTe altermagnet with in-plane Néel vector is a quadratic band 
dispersion and spin splitting near the Γ point (Fig. 3c,f). The absence 
of the constant and linear spin-splitting terms highlights the principal 
distinction from the exchange spin splitting present in ferromagnets 
and the spin–orbit-coupling-induced spin splitting present in the 
non-magnetic P-symmetry-breaking crystals.

The collinear spin polarization is not a feature seen exclusively in 
the spin–orbit-coupled band structure of MnTe. In Fig. 4e,f, we show 
the electronic structure of a candidate 2D altermagnet FeSe (ref. 7). 
Without spin–orbit coupling (Fig. 4e), the spin-polarized 2D bands 
have a d-wave ordering. When spin–orbit coupling is included and the 
Néel vector is oriented in the direction normal to the 2D plane (Fig. 4f), 
spin-polarized states in valleys around M points in the Brillouin zone 
acquire a common spin axis, this time parallel to the Néel vector. For 
energy ranges where the spectrum contains only the M-point valleys, 
the entire energy isosurface in the 2D momentum space has a common 
momentum-independent spin-polarization axis. This is again despite 
the large spin–orbit-coupling strength introduced by Se, which gener-
ates a splitting in the M-point valleys on the 100-meV scale (Fig. 4f).

We now move on to topological phenomena. In the non-collinear 
compensated magnets, the observation of the large anomalous 
Hall effect prompted the research of Weyl fermions and topological 
signatures in the magnetotransport132,151,192–195. Below we highlight 
topological band-structure phenomena that are characteristic of alter-
magnets7,9,10,12,17,106,107,113,121,125,181–187,196. Several of these phenomena are 
related to the spin-degenerate nodal lines in the Brillouin zone, which 
are the remnants of the nodal planes of the altermagnet when the spin–
orbit coupling is included. They are topologically trivial with respect to 
non-spatial symmetries. When present, however, these Brillouin-zone 
nodal lines, and the corresponding Weyl nodes in the band structure, 
can be protected by mirror symmetries of the crystal121,183,184. Therefore, 
they remain stable against small perturbations (for example, by mag-
netic field or strain) that preserve the mirror symmetries121.

We again illustrate these and other topological phenomena on 
representative altermagnetic materials. In CrSb, the splitting of the 
kz = 0 nodal plane by the spin–orbit coupling leads to the emergence 
of pairs of Weyl points and thus Fermi surface arcs106. Here the Weyl 
points result from the crossing of bands with opposite spin. Conversely, 
along the spin-split parts of the Brillouin zone in the band structure 

without spin–orbit coupling, crossings of bands with the same spin give 
rise to spin-polarized Weyl points. Fermi arcs connecting the surface 
projections of the Weyl points with the same total spin are also spin 
polarized106,107. In altermagnetic VNb3S6, signatures of linearly dispers-
ing Weyl nodes were experimentally detected by Raman scattering 
spectroscopy196.

An extraordinary interplay of topology and spin–orbit coupling can 
be illustrated on the 2D altermagnetic candidate FeSe (ref. 7; Fig. 4e–g).  
Without spin–orbit coupling, the bands feature spin degeneracy 
above and below the Fermi level at the M points, which are located 
at the two nodal lines in the 2D Brillouin zone of this d-wave alterma-
gnet (Fig. 4e). In addition, there are two crossings of bands with the 
same spin at the Fermi level. They are located on the M–X and M–Y 
lines (Fig. 4e), respectively, and are connected by the altermagnetic 
spin symmetries. Spin–orbit coupling splits these same-spin band 
crossings and shifts further apart in energy the two spin-degenerate 
bands at the M point by about  100 meV, resulting in the formation of 
a 2D topological spin-Chern insulator (Fig. 4f). As already highlighted 
above in the discussion of the spin–orbit-coupling effects in FeSe, the 
spin polarization maintains a momentum-independent axis in the val-
leys around the M points, even for this relatively large strength of the 
spin–orbit coupling in FeSe. This leads to an exceptionally precise quan-
tization of the quantum spin Hall effect over a broad range of energies7  
(Fig. 4g).

Crossings of bands with the same spin, and their connection to 
non-trivial topology, are widespread in altermagnetic materials113,125,186. 
Further insights about the topological nature of such crossings follow 
from analysing the 2D Lieb-lattice model7,8,113,114 (Fig. 1), of which mon-
olayer FeSe is a particular material realization. A characteristic feature 
of this model, illustrated in Fig. 4d, is the existence of a quadratic band 
crossing at the M point197. Altermagnetic order splits the quadratic band 
crossing into pairs of crossings of same-spin bands (Dirac points in 
2D) located at the M–X and M–Y zone edges and related by the [C2∣∣C4] 
spin symmetry (see inset of Fig. 4d). Although these Dirac points are 
guaranteed to exist for an infinitesimally small sublattice magnetic 
moment, a large enough moment will bring the Dirac crossings to the X 
and Y points and remove them. The impact of the spin–orbit coupling 
depends on the direction of the Néel vector113. For the out-of-plane 
direction, like in the case of the above discussed FeSe, the Dirac points 
are gapped out, resulting in the topological quantum spin Hall state 
and mirror spin-Chern bands.7,113. For the in-plane Néel vector, however, 
even if the Dirac points are gapped, the bands are topologically trivial. 
This illustrates that the direction of the Néel vector has a substantial 
impact on the opposite-spin and same-spin band crossings. In 3D lat-
tices, same-spin band crossings can also occur, where they can give rise 
to Weyl nodal loops in the presence of spin–orbit coupling113.

Another promising route to imprint unusual electronic proper-
ties in altermagnetic materials is to combine their characteristic 
anisotropic nodal spin ordering with other phases, such as quantum 
anomalous Hall Chern insulators, axion insulators, multiferroics or 
superconductors1,2,5–30. The interplay between superconductivity and 
altermagnetism or altermagnetic fluctuations has been investigated 
as intrinsic phenomena in a single material or in the context of hetero-
structures, where pairing is induced by the proximity effect, and bulk 
systems, where pairing and altermagnetic ordering coexist. These 
studies have revealed the emergence of intriguing phenomena, such 
as unconventional Andreev reflection, pair density waves, non-trivial 
topological modes and non-reciprocal supercurrents.

Outlook
The salient band-structure features of altermagnets can have unparal-
leled practical utility in spintronics, sharing the merits of the vanishing 
net magnetization with the earlier studied collinear and non-collinear 
compensated magnets, and sharing the merits of the well-separated 
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and conserved spin-up and spin-down channels with the conventional 
ferromagnets.

Altermagnetism can lead to unique spin–orbit coupling and topologi-
cal phenomena, such as spin polarizations that are collinear despite 
their spin–orbit-coupling origin, or topological Weyl points that reflect 
the specific altermagnetic spin-group symmetries. In addition, alterma-
gnets represent a unique platform to search for quantized topological 
responses at zero magnetic field and high temperatures, or to combine 
this anisotropic compensated T-symmetry-breaking magnetic order-
ing with superconductivity.

Notwithstanding the remarkable and rapid progress in the field, 
several open questions remain and new research directions emerge on 
the horizon. For instance, it is an intriguing question whether an alter-
magnetic quantum critical point can promote new phenomena179,198, 
perhaps related to non-Fermi liquid behaviour and unconventional 
superconductivity, that is not encountered in other widely studied 
quantum-critical ferroic orders, such as ferromagnetism, ferroelectric-
ity and nematicity. A recent report on the coexistence of the strange 
metallic behaviour and the anomalous Hall effect in an altermagnetic 
phase of a Kondo lattice-like flat-band system179 illustrates the emer-
gence of a research path exploring the impact of correlations and bad 
metal behaviour on altermagnetic properties of strongly correlated 
materials.

Finally, an extensive experimental effort, complementing the parallel 
fruitful research of other compensated magnetic phases, is needed to 
establish all the predicted specific symmetry, microscopy and spec-
troscopy signatures of altermagnetism, to further explore the cor-
responding unconventional electronic and optical responses, and to 
exploit them in novel devices.
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