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Abstract. We investigate field effect transistors (FETs) based on semiconducting armchair-edged silicene
nanoribbons (ASiNRs) by using ab initio quantum transport calculations. These FETs have high perfor-
mance with an Ion/Ioff ratio of over 106 and a subthreshold swing as small as 90 mV/decade. Impressively,
the output characteristic shows a saturation behavior. The drain-current saturation is an advantage with
respect to device speed, but it’s usually absent in carbon-based (e.g., graphene, graphene nanoribbons,
carbon nanotubes, and organic single-molecule) FETs.

1 Introduction

Silicon metal-oxide-semiconductor field effect transistors
(MOSFETs) are the building blocks of the modern elec-
tronics, and the rapid evolution of modern information
society demands higher device performance (e.g., high
Ion/Ioff ratio, quick respond, and lower-power consump-
tion). Scaling down the MOSFETs is a significant key
to improve the device performance [1,2]. Nowadays, pro-
cessors containing two billion MOSFETs (gate length
≈30 nm) are in mass production [3]. However, it is a
consensus that MOSFET scaling down is approaching its
limits because field effect transistors (FETs) with short
gates frequently suffer from short-channel effects, such as
threshold voltage roll-off, drain-induced barrier lowering,
and impaired drain-current saturation [2,4]. Scaling the-
ory predicts that reducing the thickness of the gate in-
sulator and the semiconductor body can make the FETs
be robust against short-channel effects down to very short
gate lengths [5]. Therefore, monolayer materials such as
graphene are highly appreciated.

Very recently, the synthesis of epitaxial single-layer sil-
icene sheets on Ag(111) substrate [6] has been proved
through the combination of scanning tunneling mi-
croscopy (STM), angular-resolved photoemission spec-
troscopy (ARPES), and the calculations based on density
functional theory (DFT) and tight-binding (TB) approx-
imation. For example, the average Si-Si distance obtain
from STM images is 0.22 nm (±0.01 nm) [6], in excel-
lent agreement with the DFT values of 0.225 nm [7,8].
And the ARPES data show the presence of the Dirac
cone with high Fermi velocity of 1.3 × 106 m/s in sil-

a e-mail: jinglu@pku.edu.cn

icene [6], comparable to that of 1.09 ± 0.15 × 106 m/s for
graphene [9]. Whereas the DFT [7,8,10] and TB [11] cal-
culations show that similar to graphene, silicene is also a
zero-gap semiconductor, and its charge carriers are mass-
less fermions because its π and π∗ bands are linearly dis-
persed (namely Dirac Cone) around the Fermi level (Ef ).
This would lead to a quite large carrier mobility compared
to that of graphene (i.e., 104–105 cm2/V s [12–15]).

Meanwhile, new evidences (i.e., atomically resolved
STM images [16], K-edge energy loss spectra [17], and
ARPES [18]) have proved the synthesis of zigzag-edged
silicene nanoribbons (ZSiNRs) on Ag(110) surface with
1.6 nm in width and several hundred nm in length. The
first-principles calculations have demonstrated that the
nonmagnetic H-terminated ZSiNRs are metals while the
H-terminated armchair-edged silicene nanoribbons (AS-
iNRs) are semiconductors [19,20]. Hence, the ASiNRs can
be truncated to a few nm and connected to proper ZS-
iNR electrodes to form seamless Z-shape semiconducting
devices. The quasi-one-dimensional electrode [21–24] can
significantly reduce the screening of the gate electric fields
effect compared with the bulky metal electrodes [25–27],
and the seamless connection between the electrode and
scattering region can minimize the series resistances be-
tween the channel and the source and drain terminals [28].
Besides, as a silicon counterpart, silicene and its nanorib-
bons are expected to have the advantage of more easily fit-
ting into the current silicon-based micro/nanoelectronics
industry [29].

In this article, we connected ultrashort (4.40–
14.51 nm) semiconducting ASiNRs to proper metallic ZS-
iNRs electrodes to form seamless Z-shape devices, and
the ab initio quantum transport calculations are per-
formed. High performance bipolar gate effects with an
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Ion/Ioff ratio of over 106 and a subthreshold swing as small
as 90 mV/decade are observed in intrinsic ASiNR-based
FETs. Inspiringly, the output characteristic exhibits a sat-
uration current, which it is usually absent in carbon-based
FETs [30–35].

2 Model and method

We use Na-ASiNR and Nz-ZSiNR to denote an H-
passivated ASiNR and ZSiNR with Na dimer lines and
Nz zigzag chains across the ribbon width, respectively. A
vacuum space of 16 Å is placed to avoid interaction be-
tween the nanoribbon and its periodic images. Within the
framework of DFT, the geometry structures of the infi-
nite Na-ASiNR (Na = 6−11) and Nz-ZSiNR (Nz = 4−7)
are relaxed until the maximum atomic force is less than
0.02 eV/Å by using an ultrasoft pseudopotential [36] plane
wave basis set as implemented in the CASTEP pack-
age [37]. We take a cutoff energy of 260 eV and a 1×1×9
Monkhorst-Pack [38] k-points grid for the integration of
the first Brillouin zone. On the basis of the equilibrium
structures, the electronic structures are calculated with a
cutoff energy of 400 eV and 1 × 1 × 49 k-points.

The infinite optimized Na-ASiNRs (Na = 6, 7, 9, and
10) are then truncated to 4.40–14.51 nm and connected
to proper optimized ZSiNRs electrodes to form seamless
Z-shape devices. We use L to denote the channel length of
the Na-ASiNR-based FET. The transport properties are
calculated using the ATK 2008.10 code [39,40], which is
based on the DFT coupled with nonequilibrium Green’s
function (NEGF) method. We use a mesh cut-off energy
of 150 Ry and a single-ζ basis set (SZ). The electrode
temperature is set as 300 K. The k-points of the elec-
trodes, which are generated by Monkhorst-Pack scheme
as well, are set to 1 × 1 × 500. Local density approxi-
mation (LDA) of Perdew-Zunger (PZ) form [41] is cho-
sen for the exchange-correlation functional throughout the
calculations.

The current is calculated using the Landauer-Büttiker
formula [42],

I(Vgate, Vbias) =
2e

h

+∞∫

−∞
{T (E, Vgate, Vbias)[fL(E − μL)]

− fR(E − μR)]}dE (1)

where T (E, Vgate, Vbias) is the transmission probability at
a given gate voltage Vgate and bias voltage Vbias, fL/R is
the Fermi-Dirac distribution function for the left (L)/right
(R) electrode, and μL/μR is the electrochemical potential
of the left (L)/right (R) electrode. In our model, we will
take the effect of gate voltage into account by adding a
constant shift to the electrostatic potential of the scatter-
ing region.

The DFT theory has three shortcomings. One is that
it is a ground-state theory, so it can’t treat excited states.
One is that it doesn’t differentiate between the two po-
tentials of occupied (VN−1) and unoccupied states (VN ).
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Fig. 1. (Color online) (a) Top and side views of the optimized
6-ASiNR. The primitive cell is denoted by the black rectangle.
The relaxed bond lengths in a unit cell are marked. The adja-
cent Si atoms are slightly buckled with a distance of Δ. Yellow
ball: Si; white ball: H. (b) Band gap changes of the Na-ASiNRs
with the width index Na.

And another is that the self-interaction correction is not
included and the exchange-correlation potential (VXC)
doesn’t include nonlocal effects nor energy- and electron
density dependencies [43]. Hence, it is noteworthy here
that the conventional DFT has a tendency to underesti-
mate the band gap of a semiconductor, and the band gap
correction is generally enhanced when the dimension is
reduced as a consequence of the enhanced Coulomb in-
teraction effects. For example, the quasi-particle energy
correction (GW method) increases the LDA band gap
of 10-AGNR (i.e. armchair-edged graphene nanoribbons
with 10 dimer lines across the ribbon width) from 1.3 to
3.2 eV [44]. Therefore, the band gaps of the ASiNRs con-
sidered in this paper are probably underestimated by more
than a half. As a result, the off current and therefore the
Ion/Ioff ratios of ASiNR FETs should be underestimated.

3 Results and discussion

The top and side views of an optimized 6-ASiNR are
shown in Figure 1a. The edge diagonal and horizontal Si-
Si bonds are slightly shrunk by 0.02 and 0.06 Å from the
inner Si-Si bonds of 2.24−2.25 Å (same as the Si-Si bond
in silicene), respectively. And the adjacent Si atoms are
slightly buckled with a distance of Δ = 0.38−0.45 Å,
compared with Δ = 0.42 Å in silicene. These struc-
tural parameters are in good agreement with previous
works [7,8,19]. The ASiNRs are semiconductors with di-
rect band gaps located at the Γ points, while the ZS-
iNRs are metals. We give the band gaps of the Na-ASiNR
(Na = 6−11) in Figure 2b. These band gaps belong to
three branches with widths Na = 3k, 3k + 1, 3k+2 (k
is an integer) as Family I, II, and III, respectively, and
the band gap of each family deceases with the increasing
width. The band gaps of the 6-, 7-, 9-, and 10-ASiNRs are
0.44, 0.61, 0.32, and 0.44 eV, respectively. Our results are
consistent with the previous work [19].

A gated two-probe model constructed by an optimized
truncated 6-ASiNR connected to the 4-ZSiNR electrodes
is shown in Figure 2a The calculated transfer character-
istics at Vbias = 0.02 V for all the calculated FETs with
different channel lengths are presented in Figures 2b−2d.
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Fig. 2. (Color online) (a) A gated two-probe model con-
structed by an optimized 6-ASiNR connected to the 4-ZSiNR
electrodes. The channel length is 4.62 nm. Yellow ball: Si;
white ball: H. (b)–(d) Calculated transfer characteristics at
Vbias = 0.02 V of the Na-ASiNR (Na = 6, 7, 9, and 10) FETs
as a function of the channel length.

Perfect bipolar gate effects are observed for the 6- and 9-
ASiNR FETs, while the current valleys move slightly to a
positive gate voltage for the 7- and 10-ASiNR FETs expect
for the 7-ASiNR (L = 7.69 nm) FET with the current val-
ley at a negative gate voltage. The value of Vgate at which
the FET is just on the verge of switching on is the thresh-
old voltage, Vth. The Vth usually happens at Vgate ≈ ±1 V
for the shortest effective ASiNR FETs (Ion/Ioff � 10),
and it gradually move to a smaller absolute value with
the increasing L.

The Ion/Ioff ratios (Vbias = 0.02 V) of the checked AG-
NRs as a function of L are shown in Figure 3a. Because
the I-Vgate curves are often slightly asymmetric, the value
of Ion is averaged over the Ion on the positive and negative
Vgate. The Ion/Ioff ratios are monotonously enhanced with
L for a given ASiNR FET. This tendency has also been
obtained theoretically in bipolar Z-shape armchair-edged
graphene nanoribbons (AGNRs) FETs [35] and n-type sil-
icon nanowires (SiNWs) FETs [45]. The increased Ion/Ioff

ratios with L in the ultrashort ASiNR-based FETs orig-
inate from the fact that the off-state currents drop more
rapidly with L than the on-state current (see Figs. 2b−2d)
because the tunneling probability of the off-state current
decreases rapidly with L. At a given L, the Ion/Ioff ra-
tio decreases with the increasing nanoribbon width for
the ASiNRs belong to the same family. The Ion/Ioff ra-
tios of the ASiNR FETs belong to Family I are smaller
than those of the ASiNR FETs with similar L belong to
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Fig. 3. (Color online) (a) Ion/Ioff ratios, (b) on-state currents,
and (c) subthreshold swings (S) of the Na-ASiNR (Na = 6, 7,
9, and 10) FETs at Vbias = 0.02 V as a function of the channel
length (L).

Family II with same k at a shorter L. For example, the
Ion/Ioff ratio of the 7-ASiNR FET is smaller than that of
the 6-ASiNR FET with similar L when L is shorter than
∼10.0 nm. The Ion/Ioff ratios of the 6-ASiNR FETs with
L � 7.91 nm and the 7-ASiNR FETs with L � 9.67 nm
are over 103, and especially the Ion/Ioff ratio is up to over
106 in the 6-ASiNR (L = 14.51 nm) FET. The Ion/Ioff

ratios of the 9-ASiNR (L = 9.67 nm) and 10-ASiNR
(L = 9.89 nm) FETs are over 102. We expect the Ion/Ioff

ratios of the 9- and 10-ASiNR FETs will be over 103 when
the channel lengths are larger than 12 nm. The bipolar 10-
AGNR FET with L = 5.91 nm and the n-type SiNW FET
with L = 7 nm have theoretical Ion/Ioff ratios of 2 × 103

at Vbias = 0.02 V [35] and ∼104 at Vbias = 0.5 V [45],
respectively.

The on-state current determines the FET switching
speed, whereas the off-state current determines the pas-
sive power consumed by a logic gate (e.g., an inverter).
A high-speed low-power device should possess both high
Ion/Ioff ratio and Ion. The Ion values (Vbias = 0.02 V)
of all ASiNR FETs are shown in Figure 3b as a func-
tion of L. The on-currents for a given ASiNR FET are
generally decreased rapidly at first and then are satu-
rated with increasing L. For example, the Ion values of
the 6-ASiNR FETs generally decrease from 5.90×10−2 to
3.69×10−2 μA when L increases from 4.62 to 9.89 nm, and
then it is nearly unchanged until L increases to 11.45 nm.
We find that the Ion values increase in the orders of 7-
< 10- < 6- < 9-ASiNR FETs with similar L expect for
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10-ASiNR(4.62 nm). For example, the Ion values of the 6-
ASiNR (L = 9.89 nm), 7-ASiNR (L = 9.67 nm), 9-ASiNR
(L = 9.67 nm), and 10-ASiNR (L = 9.89 nm) FETs are
3.69×10−2, 2.12×10−3, 5.79×10−2, and 8.23×10−3 μA,
respectively. The theoretical Ion values of the bipolar 10-
AGNR FET with L = 5.91 nm and the n-type SiNW FET
with L = 7 nm are about 0.7 μA at Vbias = 0.02 V [35]
and about 3 μA at Vbias = 0.5 V [45], respectively, which
are a few tens and a few times larger then the Ion values
of our ASiNR FETs.

The subthreshold swing (S) is also an important pa-
rameter of FETs. It determines how effectively the tran-
sistor can be turned off by changing the gate voltage. The
smaller the S, the sharper of the on-off switching of a tran-
sistor. It has a theoretical best value of S = (kBT /q)ln(10)
(kB and q are the Boltzmann constant and the charge
of the carriers, respectively), corresponding to numeri-
cal value of 60 mV/decade at T = 300 K. The S values
(Vbias = 0.02 V) of all the ASiNR FETs with an Ion/Ioff

ratio >10 are shown in Figure 3c as a function of L (S here
is defined as averaged dVgate/d(logI) over the value in the
positive and negative Vgate related to the sub-threshold
region). The subthreshold swings monotonously decrease
with increasing L for a given ASiNR FET. For example,
the S values of the 6-ASiNR FETs decrease from 2616 to
90 mV/decade when L increases from 4.62 to 14.51 nm.
Whereas, the theoretical S values of the bipolar 10-AGNR
FETs decrease from 2250 to 60 mV/decade when L in-
creases from 1.69 to 6.76 nm [35] and the theoretical S
values of the n-type SiNW FETs decrease from 132 to
65 mV/decade when L increases from 7 to 25 nm [45]. At
a given L, the S increases with the increasing nanoribbon
width for the ASiNRs belong to the same family. In spe-
cific, the S values decrease in the orders of 10- > 9- ≈ 7-
> 6-ASiNR FETs with similar L. For example, the S val-
ues of 6-ASiNR (L = 9.89 nm), 7-ASiNR (L = 9.67 nm),
9-ASiNR (L = 9.67 nm), and 10-ASiNR (L = 9.89 nm)
are 264, 381, 394, and 1217 mV/decade, respectively.

The transmission eigenchannels and at the Γ points
at Ef for the off- (Vgate = 0.0 V) and on-states (Vgate =
−3.0 V) of the 6-ASiNR (L = 4.62 nm) FET are given in
Figures 4a and 4b, respectively. The transmission eigen-
value of the on-state is 1.03 × 10−2 and it decreases one
order of magnitude in the off-state to a value of 1.05×10−3.
This implies that more electrons can reach the right lead
in the on-state as can be seen from the wavefunctions in
the figure.

The calculated output characteristic of the 6-ASiNR
(L = 9.89 nm) FET is given in Figure 5a. This is a
typical output characteristic of a FET. Namely, the cur-
rents are at first increase linearly (Vbias < 0.1 V) and
then become a constant (Vbias � 0.1 V) with the increas-
ing bias voltage at the above-threshold region (Vgate �
Vth ≈ −1 V). The saturated output characteristic is
an advantage with respect to device speed. Whereas
the output characteristics of many carbon-based (e.g.,
graphene [32–34], graphene nanoribbons [35], carbon nan-
otubes [31], and organic single-molecule [30] FETs either
show a linear shape without any saturation or only weak

Fig. 4. (Color online) (a, b) Transmission eigenchannels at the
Γ points and at the Fermi level of the 6-ASiNR (L = 4.62 nm)
FET at a gate voltage of 0 (a) and 3 V (b). The isovalue is
0.001 a.u. Red and blue are used to indicate the positive and
negative signs of the wavefunctions, respectively. Yellow ball:
Si; white ball: H.

saturation. The saturated output characteristic of the
ASiNR-based FETs is a prominent advantage to carbon-
based FETs. As to the SiNW-based FETs, both the out-
put current saturated [46,47] and unsaturated characters
are obtained [48–50].

We finally investigate whether an n- and p-type FET
can be obtained via substituting two edge Si atoms with
phosphorus (P) and boron (B) atoms, respectively. It cor-
responds to a dopant concentration of ∼1.68× 1013/cm2.
The resulting transfer characteristics of the pure and
doped 6-ASiNR (L = 9.89 nm) FETs are shown in Fig-
ure 5b. The off-state moves from Vgate = 0.0 to −7.0 and
4.0 V for P and B doping, respectively, suggestive of a
transition from bipolar behavior to n- and p-type ones,
respectively. After doping, the leakage currents of the n-
and p-type FETs increase from 4.10×10−6 to 2.67×10−4

and 1.31 × 10−4 μA, respectively, while the on-state cur-
rents at the positive and negative gate voltage increase
from 2.74× 10−2 to 1.57× 10−1 μA and from 4.64× 10−2

to 2.34×10−1 μA, respectively. Thus the Ion/Ioff ratios of
n- and p-type FETs decrease by about 15 and 5 times
from 8.99 × 103 to 5.89 × 102 and 1.78 × 103, respec-
tively. Subthreshold swings at the positive and negative
sub-threshold region of 1814 and 1198 mV/decade are
obtained in the n- and p-type FETs, respectively, larger
than a value of 264 mV/decade in the undoped one. The
decrease in the Ion/Ioff ratio is also predicted in the Z-
shape AGNR FET after N doping [35] and the function-
alized metallic single-walled carbon nanotube FET after
K doping [28].
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Fig. 5. (Color online) (a) Calculated output characteristic of
the 6-ASiNR (L = 9.89 nm) FET. The gate voltage varies
from −0.5 to −3.0 V in a step of 0.5 V. (b) Calculated transfer
characteristics (Vbias = 0.02 V) of the 6-ASiNR (L = 9.89 nm)
FETs with phosphorus (P) and boron (B) atom doping, re-
spectively.

4 Conclusion

In conclusion, we have predicted saturated and high per-
formance field effect transistors from armchair-edged sil-
icene nanoribbons by using ab initio quantum transport
calculations. The intrinsic ASiNR-based FETs exhibit
high performances bipolar gate effect with an Ion/Ioff

ratio of over 106 and a subthreshold swing as small as
90 mV/decade. The overall performance can be further
enhanced by increasing the channel length. Inspiringly, the
output characteristic shows a saturation behavior, while it
is usually absent in carbon-based FETs. These advantage
characters make the ASiNR-based FETs promising in the
future nanoelectronics.
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Appendix

We propose a field effect transistor by connecting trun-
cated semiconducting armchair-edged silicene nanorib-
bons to proper zigzag-edged silicene nanoribbons elec-
trodes. In these seamless connected devices, high
performance bipolar gate effects together with saturated
output characteristic are observed.
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