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It was recently noted that in certain nonmagnetic centrosymmetric compounds, spin–orbit interactions couple
each local sector that lacks inversion symmetry, leading to visible spin polarization effects in the real space,
dubbed “hidden spin polarization (HSP)”. However, observable spin polarization of a given local sector suffers
interference from its inversion partner, impeding material realization and potential applications of HSP. Starting
from a single-orbital tight-binding model, we propose a nontrivial way to obtain strong sector-projected spin
texture through the vanishing hybridization between inversion partners protected by nonsymmorphic symmetry.
The HSP effect is generally compensated by inversion partners near the 𝛤 point but immune from the hopping
effect around the boundary of the Brillouin zone. We further summarize 17 layer groups that support such
symmetry-assisted HSP and identify hundreds of quasi-2D materials from the existing databases by first-principle
calculations, among which a group of rare-earth compounds LnIO (Ln = Pr, Nd, Ho, Tm, and Lu) serves as
great candidates showing strong Rashba- and Dresselhaus-type HSP. Our findings expand the material pool for
potential spintronic applications and shed light on controlling HSP properties for emergent quantum phenomena.

PACS: 71.70.Ej, 85.75.−d, 61.50.Ah DOI: 10.1088/0256-307X/37/8/087105

Spin polarization, generally measured by the dif-
ference between spin-up and spin-down electrons for a
given direction 𝑆 = (𝐼↑ − 𝐼↓)/(𝐼↑ + 𝐼↓), was thought
to be limited to magnetic materials such as Fe or Ni.
The current paradigm, however, shows that spin po-
larization is possible also in nonmagnetic crystals with
strong spin-orbit coupling (SOC) and broken inversion
symmetry.[1] Recently, it was shown that in certain
centrosymmetric crystals where the energy bands are
at least two-fold degenerate, the inversion-asymmetric
sectors also manifest Rashba- or Dresselhaus-type spin
textures.[2] For a local sector (named A), such as
a monolayer of 2H-MoS2

[3,4] and a BiS2 sublayer of
LaOBiS2,[5,6] such a form of “hidden spin polarization”
(HSP) is calculated by projecting the Bloch wavefunc-
tions 𝜓𝑛(𝑘) of the doubly degenerate bands on sector
A, which can be written as follows:

𝑆A
N (𝑘) =

∑︁
𝑖∈𝐴

∑︁
𝑛∈N

⟨𝜓𝑛(𝑘)|(𝜎 ⊗ |𝑖⟩⟨𝑖|)|𝜓𝑛(𝑘)⟩, (1)

where 𝑘, 𝜎, and |𝑖⟩ denote the wavevector, Pauli op-
erator, and the localized orbitals belonging to sector
A. The band index N implies a summation over the
two bands with degenerate energy. As an observ-
able, 𝑆

A(B)
N (𝑘) is independent of the choice of any

unitary basis transformations of the two-dimensional
(2D) wavefunction space, holding the potential for de-

tectability. While HSP is an intrinsic property widely
existing in crystals with inversion-asymmetric sectors,
the word “hidden” implies that in general HSP can-
not be directly measured without inversion symmetry
breaking, but can be detected by local-probe tech-
niques that distinguish different sectors. By using
spin- and angle-resolved photoemission spectroscopy
(ARPES) measurements, the HSP effect has been ex-
perimentally confirmed in a number of centrosymmet-
ric bulk materials.[7−10] Very recently, HSP has been
reported in traditional cuprates and thus prompts the
open question of how high-temperature superconduc-
tivity correlates with such a nontrivial spin pattern.[11]

The discovery of HSP considerably broadens the
range of materials for potential spintronic applica-
tions and brings exotic physical insights into the ex-
isting fields, such as spin field effect transistors,[5]
spin switching of antiferromagnets,[12] topological
insulators[13] and topological superconductivity.[14]
Furthermore, the concept of HSP has triggered a
broader field of “hidden polarization”, where vari-
ous physical effects have been recognized to be de-
termined by the local symmetry breaking of a sys-
tem, albeit with a higher global symmetry that seem-
ingly prohibits the effect from happening. Exam-
ples include orbital polarization,[15] optical activity,[16]
circular polarization,[3,17] Berry curvature,[18] Ising
superconductivity,[19,20] etc.
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Based on the symmetry analysis of the atomic sites
or sectors,[2] most centrosymmetric materials would
be expected to manifest HSP, especially for quasi-2D
layered materials with finite thickness. However, ma-
terials with strong HSP that hold realistic potential
for applications indeed form a much smaller subgroup.
For example, silicon, germanium and tin in diamond
structure are nominal Dresselhaus-type HSP systems
because each 𝑋 (𝑋 = Si, Ge, or Sn) atom has an
inversion-asymmetric 𝑇d site point group, leading to
opposite Dresselhaus spin textures localized at the two
𝑋 sublattices. However, the strong coupling between
the two 𝑋 sublattices (hopping term through the 𝑋–
𝑋 bond) usually leads to strong hybridization between
the two sublattices and thus significantly compensates
for the HSP localized on each 𝑋 atom. Therefore, af-
ter completing “proof of existence” for HSP, the next
important question is which specific physical features
within centrosymmetric crystals actually control the
magnitude of such HSP effect, i.e., “where to look”.[21]
In addition to strong SOC that favors heavier ele-
ments, the design principle of HSP also requires to
minimize the hybridization between sectors. One ob-
vious but trivial way is to separate the two sectors as
far as possible. This is analogous to the thick slab
of a topological insulator with inversion symmetry, in
which the top and bottom surfaces manifest energy-
degenerate Dirac cones and spin polarizations with op-
posite chirality.[22] Such a type of HSP is fundamen-
tally two individual sets of spin polarization in quite
different places, which is difficult to manipulate and
integrate in one system.

Here, we explore a nontrivial, symmetry-assisted
approach to minimize the hopping effect between the
inversion-asymmetric sectors and thus protect the
HSP in each sector. Our tight-binding model reveals
that when the two sectors connect with each other
by nonsymmorphic crystalline symmetry, the electron
hopping between sectors vanishes along the Brillouin
zone (BZ) boundary and is strongly suppressed in
the vicinity of the time-reversal invariant (TRI) mo-
menta. As a result, a spin map constructed through-
out the full BZ shows that nearly perfect HSP sur-
vives even though the two sectors are close to each
other in a quasi-2D lattice. We further perform sym-
metry analysis and identify 17 quasi-2D layer groups
(out of 80) in total that support such symmetry pro-
tected HSP. Among the realistic materials in the ex-
isting quasi-2D material databases[23,24] with the se-
lected layer groups, we perform first-principle calcu-
lations and choose a rare-earth family LnIO (Ln =
Pr, Nd, Ho, Tm, and Lu) as representative candi-
dates showing strong Rashba and Dresselhaus HSP,
which is in excellent agreement with our tight-binding
model. Our finding offers a general principle for ex-
tensively exploring strong HSP materials and provides
an ideal platform to control HSP for emergent physi-
cal properties. One possible example is to tune the
hybridization gap of such an HSP system by ten-
sile strain to realize time-reversal-invariant topological
superconductivity.[14,25,26]

HSP from a Single-Orbital Tight-Binding Model.

We begin with a simple model of a nonsymmorphic 2D
lattice to illustrate how HSP in one sector survives un-
der the existence of its inversion partner. Considering
a square lattice with only two identical atoms (A and
B) in a unit cell with a small displacement between
them along the 𝑧 direction [see Fig. 1(a)], such a buck-
ling structure has a 𝑝4/𝑛𝑚𝑚 layer group with glide
mirror reflection {𝑀𝑧|(1/2,1/2,0)} and screw axis op-
erations {𝐶2𝑥|(1/2,0,0)} and {𝐶2𝑦|(0,1/2,0)}. In ad-
dition, the buckling also creates opposite local polar
fields felt by each sector (here, each atom forms a sec-
tor) along the ±𝑧 direction, rendering a Rashba-type
HSP system. Therefore, we can easily construct the
single-orbital (e.g., 𝑠, 𝑝𝑧 or 𝑑𝑧2) tight-binding model
(four bands) as follows:

𝐻(𝑘) = 𝑡1cos
𝑘𝑥
2
cos

𝑘𝑦
2
𝜏𝑥𝜎0 + 𝑡2(cos 𝑘𝑥 + cos 𝑘𝑦)𝜏0𝜎0

+ 𝜆R(sin 𝑘𝑥𝜎𝑦 − sin 𝑘𝑦𝜎𝑥)𝜏𝑧, (2)

where 𝜏 and 𝜎 are Pauli matrices describing the sector
and spin degrees of freedom, respectively. The deriva-
tion of Eq. (2) is provided in Section A of Supple-
mentary Material. The first (second) term describes
the nearest (next nearest) neighbor hopping, while the
third term presents Rashba SOC caused by local po-
lar fields. The band structures of Eq. (2) is shown in
Fig. 1(b). In the absence of SOC (𝜆R = 0), only the
second term of Eq. (2) survives along the BZ bound-
ary, leading to double degeneracy (excluding spin),
i.e., the “band sticking” effect due to nonsymmorphic
symmetry.[27] When including SOC, the energy bands
along the BZ boundary generally split into two doubly
degenerate bands, except at the high-symmetry TRI
momenta 𝑋 and 𝑀 . This is because at these points,
a nonsymmorphic symmetry fulfills the anticommuta-
tion relationship with the inversion operator, leading
to an extra two-fold degeneracy between two pairs of
Kramers degeneracy, i.e., four-fold degeneracy.[28,29]

Nonsymmorphic symmetry has recently drawn ex-
tensive attention due to such band degeneracy effects,
leading to new types of quasiparticles, such as Dirac
nodes,[29−32] nodal chains,[33] and nodal surfaces.[34]
However, its impact on the spin textures as well as
Bloch states of different sublattices has not yet been
substantially explored.[35] To reveal this effect, we an-
alytically solve Eq. (2) with the basis of |𝐴 ↑⟩, |𝐴 ↓⟩,
|𝐵 ↑⟩, |𝐵 ↓⟩ (see Supplementary Section B). The re-
sulting eigenstates are

𝜑1 =
1√
2

⎛⎜⎜⎝
1

𝐷−/𝐹
−𝑀/𝐹

0

⎞⎟⎟⎠ , 𝜑2 =
1√
2

⎛⎜⎜⎝
0

−𝑀/𝐹
−𝐷+/𝐹

1

⎞⎟⎟⎠ ,

𝜑3 =
1√
2

⎛⎜⎜⎝
1

−𝐷−/𝐹
𝑀/𝐹
0

⎞⎟⎟⎠ , 𝜑4 =
1√
2

⎛⎜⎜⎝
0

𝑀/𝐹
𝐷+/𝐹

1

⎞⎟⎟⎠ , (3)

where 𝑀 = 𝑡1 cos(𝑘𝑥/2) cos(𝑘𝑦/2), 𝑁 = 𝑡2(cos 𝑘𝑥 +

cos 𝑘𝑦), 𝐷+ = 𝜆R(sin 𝑘𝑦 + 𝑖 sin 𝑘𝑥), 𝐷− = 𝐷†
+, and

087105-2

Chin. Phys. Lett.
References

Chin. Phys. Lett.
References

Chin. Phys. Lett.
References

Chin. Phys. Lett.
References

Chin. Phys. Lett.
References

Chin. Phys. Lett.
References

Chin. Phys. Lett.
References

Chin. Phys. Lett.
References

Chin. Phys. Lett.
References

Chin. Phys. Lett.
References

Chin. Phys. Lett.
References

http://cpl.iphy.ac.cn


CHIN.PHYS. LETT. Vol. 37, No. 8 (2020) 087105 Express Letter

𝐹 =
√︀
𝑀2 +𝐷+𝐷−. In order to quantify and min-

imize the mixture of wavefunctions between differ-
ent sectors, we then define a quantity named sec-
tor polarization 𝑃 sec

𝑛 (𝑘) = (𝜌A𝑛 − 𝜌B𝑛)/(𝜌
A
𝑛 + 𝜌B𝑛),

where 𝜌A/B
𝑛 =

∑︀
𝑖∈A/B⟨𝜑𝑛(𝑘)|𝑖⟩⟨𝑖|𝜑𝑛(𝑘)⟩ is the mod-

ule squared wavefunction projected onto sector A or
B. Note that in quantum mechanics, if two eigen-
states are degenerate, any linear combination of the
two states is also an eigenstate of the system. There-
fore, 𝑃 sec

𝑛 is gauge variant for a single branch of doubly
degenerate bands, depending on the unitary transfor-
mation of basis that mixes 𝜑1 and 𝜑2 (while HSP is
gauge invariant, see below). When a certain form of
inversion-symmetry breaking is introduced, such as a
tiny electric field along the 𝑧 direction, a definitive
gauge (in this case {𝜑1, 𝜑2} and {𝜑3, 𝜑4}) is picked
up.

The sector polarization 𝑃 sec
𝑛 (𝑘) of the lowest dou-

bly degenerate bands and eigenstates {𝜑1, 𝜑2} are
shown in Fig. 1(c). The most important feature is that
at the BZ boundary 𝑋–𝑀 , 𝑃 sec

𝑛 is pinned to its max-
imum value ±1, indicating a vanishing hopping effect
between sectors A and B. In sharp contrast, the sec-
tor polarization at the 𝛤 point is exactly zero. These
observations can be explained by the model Hamilto-
nian, where the off-diagonal matrix elements are con-
tributed solely by the first term of Eq. (2) contain-
ing 𝜏𝑥. At the BZ boundary, the first term vanishes,
and the Hamiltonian is the direct sum of two matrices
separately exerted on two subspaces spanned by two
sectors. Therefore, the two eigenstates are naturally
chosen to be located in either sector A or B, leading
to maximum sector polarization. This is analogous to
the fact that two bands with different group represen-
tations do not hybridize when they meet each other,
leading to a degenerate band-crossing point. In either
case, the representation space of this special point can
be spanned as a direct sum of two subspaces from the
two crossing bands. On the other hand, when the
wavevector moves to 𝛤 from the BZ boundary, the 𝜏𝑥
term of Eq. (2) becomes more predominant, leading to
descending 𝑃 sec

𝑛 with the electron density finally dis-
tributed equally in A and B sectors at 𝛤 . Note that
if we do not consider any symmetry requirements but
just separate the two sectors very far away from each
other, the 𝜏𝑥 term of Eq. (2) also vanishes because of
the negligible hopping parameter 𝑡1. However, such
a strategy is just a trivial overlap of two individual
inversion-asymmetric systems in 𝑘-space and is not
useful for real material design.

The direct consequence of full sector polarization
is that the HSP also reaches its maximum value at the
BZ boundary. The sector-projected spin polarization
is calculated by projecting the wavefunction on sector
A or B, as written in Eq. (1). Remarkably, 𝑆A(B)

N (𝑘)
is independent of the choice of unitary basis trans-
formation, indicating an observable (see Section B of
Supplementary Material). The sector-projected spin
textures on sector A and B are shown in Fig. 1(d).
At the BZ boundary, both inversion-asymmetric sec-
tors retain large but opposite HSP. Such spin polar-

ization signals can be measured by spin-ARPES when
the local probe is located at sector A or B. In sharp
contrast, around the 𝛤 point, the HSP localized at
one sector is almost fully compensated by its inver-
sion partner because the corresponding wavefunction
contains a substantial mixture of the two sublattices,
leading to vanishing 𝑃 sec

𝑛 . Interestingly, we note that
around the TRI momenta, the projected spin textures
are Rashba-type at the 𝑀 point but Dresselhaus-type
at the 𝑋 point, validating that the symmetry require-
ment of the Rashba effect always suggests an accom-
panying Dresselhaus effect.[2] Specifically, the low en-
ergy effective 𝑘 ·𝑝 Hamiltonians expanded by the SOC
term of Eq. (2) takes the form of (𝑘𝑥𝜎𝑦 − 𝑘𝑦𝜎𝑥)𝜏𝑧 at
𝑀 , while (𝑘𝑥𝜎𝑦 + 𝑘𝑦𝜎𝑥)𝜏𝑧 at 𝑋, indicating Rashba-
and Dresselhaus-type spin patterns, respectively.

-1.5

-1

-0.5

0

0.5

1

 0.0
-0.2

-0.5

-2.0

X M GG

X MG

0

0.5

1

1.5

2

G

B

(b)

(c) (d)

(a)

A
G X

M

E
n
e
rg

y
 (

e
V

)

0 0.5

0

0.5 M

X

Sector A

Sector B

t1
t2

E3

E1

E1

E2

E2

E4

lR/t1

P sec=(rA-rB)/(rA+rB)n

nP
 s
e
c

G

k
y
 (

2
p
/
a
)

kx (2p/a)

Fig. 1. (a) A square lattice with two identical atoms (A
and B) in one unit cell. The nonsymmorphic symmetry is
caused by the atomic displacement along the 𝑧 direction.
𝑡1 (𝑡2) is the nearest (next nearest) neighbor hopping pa-
rameter. (b) Band structure of this square lattice without
and with SOC (𝜆R/𝑡1 = −0.2). (c) Sector polarization
(𝑃 sec

𝑛 ) of the lowest two doubly-degenerate bands 𝐸1 and
𝐸2 for different strength of Rashba SOC 𝜆R induced by
the local polar field. (d) Projected spin texture onto sec-
tor A (red) and B (blue) for the lowest two bands 𝐸1 and
𝐸2 (𝜆R/𝑡1 = −0.2).

The sector polarization for different SOC strengths
(quantified by 𝜆R/𝑡1) is also shown in Fig. 1(c). The
main variation lies in the descending trends from 𝑀
and 𝑋 to 𝛤 . Along these directions, the sector polar-
ization 𝑃 sec

𝑛 increases with 𝜆R/𝑡1, indicating that in
Eq. (2) the SOC term containing 𝜏𝑧 enhances the po-
larization, while the intersector coupling term contain-
ing 𝜏𝑥 suppresses the polarization. The results shown
in Fig. 1(c) clearly indicate that in certain nominal
HSP materials, such as silicon, the magnitude of HSP
would be very small because of the large hopping pa-
rameter between two silicon atoms and the small SOC
strength. Consequently, it is desirable to have the pro-
tected HSP effect forming a large domain throughout
the BZ by tuning the SOC strength relative to the
intersector coupling.

Symmetry Consideration and Other Prototypical
Nonsymmorphic Structures. For the realization of re-
alistic materials that manifest strong Rashba HSP, we
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next construct some symmetry requirements as de-
sign principles and scan the stable quasi-2D material
databases, including Materialsweb[23] and AiiDA,[24]
to select ideal candidates with our target property.
The reason we choose such layered materials is to build
a straightforward connection with our tight-binding
model. Since Rashba HSP requires a principle axis
that is favored by layered structures, our screening
process can be easily generalized to 3D Rashba hidden

spin systems (such as LaOBiS2
[2] and BaNiS2

[36,37]).
We choose layer groups (80 in total) to classify the
symmetry of quasi-2D materials, which greatly nar-
rows the range of 3D space groups (230 in total) that
need to be considered. The correspondence between
all the layer groups and space groups is provided in
the process of classification, as shown in Section C of
Supplementary Material.

Table 1. List of layer groups with inversion symmetry and nonsymmorphic symmetry and the corre-
sponding quasi-2D materials.

Point group Layer group Space group # of materials Representative materials

𝐶2h

L15 𝑝21/𝑚11 11 𝑃21/𝑚 49 AgBr
L16 𝑝2/𝑏11 13 𝑃2/𝑐 8 Pr2I5
L17 𝑝21/𝑏11 14 𝑃21/𝑐 31 AgF2

𝐷2h

L38 𝑝𝑚𝑎𝑎 49 𝑃𝑐𝑐𝑚 0 -
L39 𝑝𝑏𝑎𝑛 50 𝑃𝑏𝑎𝑛 1 BaP2(HO)4

L40 𝑝𝑚𝑎𝑚*
51 𝑃𝑚𝑚𝑎 10 CuHgSeBrL41 𝑝𝑚𝑚𝑎*

L42 𝑝𝑚𝑎𝑛 53 𝑃𝑚𝑛𝑎 7 P
L43 𝑝𝑏𝑎𝑎 54 𝑃𝑐𝑐𝑎 0 -
L44 𝑝𝑏𝑎𝑚 55 𝑃𝑏𝑎𝑚 2 WBr2
L45 𝑝𝑏𝑚𝑎 57 𝑃𝑏𝑐𝑚 1 SiO2

L46 𝑝𝑚𝑚𝑛 59 𝑃𝑚𝑚𝑛 43 ZrTe5
L48 𝑐𝑚𝑚𝑒 67 𝐶𝑚𝑚𝑒 3 TlF

𝐶4h L52 𝑝4/𝑛 85 𝑃4/𝑛 4 MoPO5

𝐷4h

L62 𝑝4/𝑛𝑏𝑚 125 𝑃4/𝑛𝑏𝑚 0 -
L63 𝑝4/𝑚𝑏𝑚 127 𝑃4/𝑚𝑏𝑚 1 MoBr2
L64 𝑝4/𝑛𝑚𝑚 129 𝑃4/𝑛𝑚𝑚 64 LuIO

*Layer group 𝑝𝑚𝑎𝑚 (L40) and 𝑝𝑚𝑚𝑎 (L41) are distinguished from each other by the direction of the
glide mirror, and these two layer groups correspond to the same 3D space group Pmma.

A

B

A

A

A
B

B

B

(a) p4/nmm (D4h)

(c) p21/m11 (C2h) (d) p4/n (C4h)

(b) pmmn (D2h)

Fig. 2. Top view of the prototypical structures for (a)
layer group 𝑝4/𝑛𝑚𝑚 (𝐷4h, No. L64), (b) layer group
𝑝𝑚𝑚𝑛 (𝐷2h, No. L46), (c) layer group 𝑝21/𝑚11 (𝐶2h,
No. L15) and (d) layer group 𝑝4/𝑛 (𝐶4h, No. L52). Balls
with different colors denote identical atoms but have dif-
ferent coordination along the 𝑧 direction.

The initial symmetry conditions are inversion sym-
metry and nonsymmorphic symmetry, which have
been shown to protect HSP at the BZ boundary in
our model calculation. This search yields 17 layer
groups from 4 point groups 𝐶2h, 𝐷2h, 𝐶4h and𝐷4h and
225 material candidates from the chosen databases
(see Table 1). For the 𝐶4h point group, there is only
one layer group 𝑝4/𝑛, which requires at least eight
atoms to construct. On the other hand, we note that

𝑝21/𝑚11, 𝑝𝑚𝑚𝑛, and 𝑝4/𝑛𝑚𝑚 (belonging to 𝐶2h,
𝐷2h, and 𝐷4h, respectively) are the three layer groups
with the largest number of materials. They can be
constructed by only two identical atoms, representing
a total of 156 materials.

The prototypical structures of the four point
groups are shown in Fig. 2. The model Hamiltonian
of the structure for layer group 𝑝4/𝑛𝑚𝑚 (𝐷4h) has
been introduced in Eq. (2). The prototypical struc-
ture 𝑝4/𝑛 (𝐶4h) is built by putting a set of general
positions in the lattice because any simpler structures
that include a set of special positions in the lattice
turn out to be structures with space groups of higher
symmetry such as 𝑝4/𝑛𝑚𝑚. Then, by taking each of
the four clustered atoms as a sector, we can still build
a 4× 4 effective Hamiltonian similar to Eq. (2).

Similarly, the prototypical structure for layer
group 𝑝𝑚𝑚𝑛 (𝐷2h) can be easily constructed by using
the same analysis as Eq. (2), except using a rectangu-
lar lattice rather than a square lattice, in the following
form:

𝐻(𝑘) = 𝑡1cos
𝑘𝑥
2
cos

𝑘𝑦
2
𝜏𝑥𝜎0

+ (𝑡21 cos 𝑘𝑥 + 𝑡22 cos 𝑘𝑦)𝜏0𝜎0

+ 𝜆R(sin 𝑘𝑥𝜎𝑦 − sin 𝑘𝑦𝜎𝑥)𝜏𝑧. (4)

Then, from Eqs. (A5) and (A9) in Section A of Sup-
plementary Material, we can obtain the one-orbital
Hamiltonian of the 𝑝21/𝑚11 structure with 𝐶2h sym-
metry in Fig. 2(c). By substituting the concrete values
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of 𝑑𝑗𝑙 into this expression, we obtain

𝐻 = 𝑡1 cos

(︂
𝑘𝑥
2

)︂
cos

(︂
𝑘𝑦
2

)︂
𝜏𝑥𝜎0

+ [𝑡21 cos 𝑘𝑥 + 𝑡22 cos 𝑘𝑦] 𝜏0𝜎0

+ 𝑡′1sin

(︂
𝑘𝑥
2

)︂
cos

(︂
𝑘𝑦
2

)︂
𝜏𝑦𝜎0

+ 𝜆R[𝜎𝑦 sin 𝑘𝑥 − 𝜎𝑥 sin 𝑘𝑦]𝜏𝑧

+ 𝜆′R sin 𝑘𝑦𝜏𝑧𝜎𝑧, (5)

where 𝑡1 = 3 𝑡11 − 𝑡12, 𝑡′1 = 𝑡12 − 𝑡11, and 𝜆′R/𝜆R ∼
𝑑𝑧/𝑏, which can influence the relative ratio of the 𝑧
component relative to the 𝑥𝑦 component of HSP, while
the total HSP is determined by 𝜆R/𝑡1. Among the
four prototypical structures, 𝑝21/𝑚11 (𝐶2h) has the
lowest symmetry. Due to the absence of a screw axis
along the 𝑥 direction, the four-fold degeneracy at the
𝑋 point lifts, and the HSP along 𝑀–𝑋 is not en-
forced to its maximum value, as shown in Fig. 3(a).
Interestingly, the spin polarization now has sizable 𝑠𝑧
components peaked along 𝑀–𝑋, in contrast to the
other three representative layer groups in which the
spin orientation is totally in-plane. This is because
the reduced symmetry of 𝑝21/𝑚11 leads to an addi-
tional term sin 𝑘𝑦𝜎𝑧𝜏𝑧 in the model Hamiltonian, as
shown in Eq. (5). Thus, as shown in Fig. 3(b), the to-
tal HSP around 𝑀 is still significant but experiences
a visible out-of-plane canting from the 𝑘𝑥 − 𝑘𝑦 plane
(37∘ for the tight-binding parameters in Fig. 3).
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Fig. 3. (a) Projected spin texture onto sectors A (red)
and B (blue) for the lowest two bands (𝜆R/𝑡1 = −0.5)
of the 𝑝21/𝑚11 structure (𝐶2h). (b) Total HSP and the
𝑠𝑧 component of the two sectors. The crystal structure is
shown in the inset of panel (b).

Materials Realization. We next apply density
functional theory (DFT) calculations, with the pres-
ence of SOC, to the material candidates selected by
the symmetry principles described above. Our first-
principle calculations use the projector-augmented
wave (PAW) pseudopotentials[38] with the exchange-
correlation of Perdew-Burke-Ernzerhof (PBE) form[39]

as implemented in the Vienna ab initio Simulation
Package (VASP).[40] The energy cutoff is chosen to
be 1.5 times as large as the values recommended in
relevant pseudopotentials. The 𝑘-point-resolved value
of the Brillouin zone sampling is 0.02 × 2𝜋 /Å. To-
tal energy minimization is performed with a tolerance
of 10−6 eV. The crystal structure is fully relaxed until
the atomic force on each atom is less than 10−2 eV/Å.
For the calculations with strain, atoms are relaxed
with fixed lattice constants. SOC is included self-
consistently throughout the calculations.
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Fig. 4. (a) Crystal structure and two local sectors of
LuIO. (b) Band structure (with SOC) with projection onto
the Lu-𝑑𝑧2 orbital. (c) Projected spin texture onto sectors
A (red) and B (blue) for the lowest two conduction bands.
(d) Hybridization gap at the 𝑀 point induced by ten-
sile strain along the [110] direction (left) and its evolution
along with the monoclinic distortion 𝛾 (right).

We find that a family of rare-earth compounds
LnIO (Ln = Pr, Nd, Ho, Tm, and Lu) manifests strong
HSP throughout the majority of the BZ, in excellent
agreement with the predictions based on our single-
orbital model. As an example, LuIO crystallizes in
a tetragonal nonmagnetic structure with a nonsym-
morphic layer group 𝑝4/𝑛𝑚𝑚 (No. L64), containing
6 atoms per unit cell, as shown in Fig. 4(a). The oxy-
gen plane containing the inversion center separates the
unit cell into two LuI sectors (A and B) that are con-
nected by the inversion symmetry. The two sectors
feel opposite polar fields generated by their local en-
vironments that lack inversion symmetry, indicating
Rashba HSP. Figure 4(b) shows the band structure
of LuIO with SOC; as discussed above, each band is
at least doubly degenerate, while the nonsymmorphic
symmetry guarantees the four-fold band crossing at
the 𝑀 point. The conduction band minimum is in the
vicinity of point 𝑀 , with the projected atomic orbitals
dominated by the 𝑑𝑧2 character of Lu atoms, fitting
with our single-orbital model very well. Therefore, we
would expect the lowest two doubly degenerate con-
duction bands to form a pair of Rashba bands with
opposite helical spin textures.

Similar to Eq. (1), the HSP is calculated by pro-
jecting the wave functions 𝜓𝑛(𝑘) with plane-wave ex-
pansion on the orbital basis (spherical harmonics) of
each atomic site and summing for a given sector A
or B that contains a number of sites (here is Lu and
I). Again, the 𝑘-resolved hidden spin density 𝑆

A(B)
N (𝑘)

is calculated by summing both degenerate bands. As
shown in Fig. 4(c), we find large and opposite spin
polarizations of the two LuI sectors for the lowest
two conduction bands. Remarkably, we observe a
strong Rashba-type HSP pattern around 𝑀 forming a
clear domain that spans nearly 80% of the whole BZ.
In addition, the spin texture around the 𝑋 point is
Dresselhaus-type, while around 𝛤 , there is a small re-
gion with vanishing HSP due to the strong hopping ef-
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fect between the two sectors. As discussed above, the
intersector hopping term totally vanishes only along
the BZ boundary 𝑋–𝑀 , and the size of large HSP do-
main in the whole BZ depends on the ratio between
the SOC strength and hopping parameter between two
sectors 𝜆R/𝑡1, rendering ideal HSP effects in the ma-
terials with relatively strong SOC.

Discussion. We note that for the energy bands
with multi-orbital features, the central physics, i.e.,
sector polarization and the resultant strong HSP pro-
tected by nonsymmorphic symmetry, still persists
along the BZ boundary. On the other hand, the
spin configuration for the other parts of the BZ could
form a more complicated pattern. This is because
different atomic orbitals could couple different spin
textures, while the total sector-projected spin tex-
ture is the superposition of the contributions from
all considered orbitals.[41] To illustrate this, we fur-
ther derive a four-orbital model Hamiltonian (𝑠, 𝑝𝑥,
𝑝𝑦, and 𝑝𝑧 orbitals) containing 16 bands and make
correspondence to the representative materials from
DFT calculations. One of the main features in-
duced by the multi-orbital nature is the retention of
HSP around the 𝛤 point for the bands with consid-
erable 𝑝𝑥 and 𝑝𝑦 components, as shown in Section
D of Supplementary Material. Recently, a theoret-
ical proposal using a 1D chain model claimed that
HSP vanishes in the vicinity of TRI momenta due
to the coupling between sectors.[42] In contrast, our
results indicate that by simply adding either non-
symmorphic symmetry or multi-orbital features,[11] an
HSP system would manifest a nontrivial spin pattern
for each inversion-asymmetric sector around TRI mo-
menta. Thus, it naturally closes such debate around
the practical significance of HSP, invoking further mo-
tivations to look for materials with remarkable hidden
spin textures and technologically relevant properties.
Since the probing beam of ARPES distinguishes dif-
ferent sectors by penetrating depth, the measurement
of momentum-resolved HSP is highly accessible by
counting the difference between the numbers of spin-
up and spin-down photoelectrons. Hence, the exper-
imental validation of our predictions on the physical
effects and material candidates is strongly needed.

HSP protected by nonsymmorphic symmetry man-
ifests two sets of spin-splitting bands that are degen-
erate in energy but localized at different inversion-
asymmetric sectors. It would be desirable to exploit
such properties for future spintronic applications, such
as the modified spin field effect transistor model[5]
and spin-dependent photogalvanic devices.[43] Finally,
we propose that HSP might further provide a plat-
form for tuning the hybridization between sectors
to realize more exotic physics, such as topological
superconductivity. In a superconductor with time-
reversal symmetry and inversion symmetry, an odd-
parity topological superconductor can be realized if
the Fermi surface of Bloch bands encloses an odd num-
ber of TRI momenta.[25] In particular, such a kind of
time-reversal-invariant topological superconductivity
is proposed to exist in an interacting bilayer Rashba
system,[14] of which the band model is nothing but an

HSP system with a hybridization gap at the Rashba
band-crossing point. The hybridization effect at the
𝛤 point requires an appropriate buffer layer between
the two Rashba layers, posing challenges to sample
growing and integration.[44] In comparison, HSP sys-
tems offer us an alternative way to achieve the re-
quired band structure for experimental realization. As
shown in Fig. 4(d), a tensile strain along [110] direc-
tion of LuIO breaks the screw axis symmetry and
thus opens a hybridization gap 𝛥 at the 𝑀 point.
The gap is 13meV with a monoclinic distortion of
the lattice 𝛾 = 89∘ and increases monotonically with
larger distortion. Our approach to achieve interact-
ing Rashba bilayer bands could be used to combine
with other design principles such as odd-parity pair-
ing symmetry for the future screening of topological
superconductivity.[25]

We thank Prof. Alex Zunger, Jun-Wei Luo, and
Xiuwen Zhang, Dr. Wen Huang, Quansheng Wu, and
Zhongjia Chen for helpful discussions.
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A. SINGLE-ORBITAL TIGHT-BINDING MODEL 

In this section we derive a general tight-binding model of a 2D lattice with inversion 

symmetry and non-symmorphic symmetry, and obtain the Hamiltonian in Eq. (1) in the 

main text by taking only one orbital with p4/nmm symmetry. Considering only two 

atoms A and B in a unit cell, as shown in Fig. S1 (a), we can construct the Bloch sum 

as follows, 

𝜑𝒌"#
$(&)(𝒓) = (

√*
∑ 𝑒+𝒌,𝑹!.𝑹"($)/𝜙"#)𝒓 − 𝑹0 − 𝑹$(&),0 .   (A1)  

where 𝑗	labels lattice site or unit cell, 𝐴	𝑎𝑛𝑑	𝐵 denote the two different atoms in one 

unit cell and 𝑛 means different atom orbital. Consequently, using the Bloch sums as 

the basis functions, the wavefunction of the system can be written in the following form  

  𝜓𝒌"# = 𝑐𝒌"#$ 𝜑𝒌"#$ (𝒓) + 𝑐𝒌"#& 𝜑𝒌"#& (𝒓). (𝜎 =↑, ↓) (A2) 



 2 

We now calculate the matrix elements of Hamiltonian H between every pair of Bloch 

sums separately located at two different atoms through the conventional routine,  

𝐻
1",##′
$& (𝒌) = >𝜑𝒌1#$ (𝒓)?𝐻?𝜑

𝒌"#′
& (𝒓)@

=A𝑒+𝒌,𝑹&3𝑹!.𝑹$3𝑹"/B𝜙"#∗ )𝒓 − 𝑹0 − 𝑹$,𝐻𝜙"#′(𝒓 − 𝑹5 − 𝑹&)𝑑𝒓
5

 

= ∑ 𝑒+𝒌,𝑹&3𝑹!.𝑹$3𝑹"/ ∙ 𝑡
05,1",##′
$&

5 . (A3) 

As 𝜙"#)𝒓 − 𝑹0 − 𝑹$,	and	𝜙"#′(𝒓 − 𝑹5 − 𝑹&)  locate at different atoms, 

𝐻
1",##′
$& (𝒌)  describes the hopping between two states. Without spin degree of 

freedom, the hopping matrix elements in the momentum space read 

 𝐻1"(𝒌) = ∑ 𝑒+𝒌,𝑹&3𝑹!.𝑹$3𝑹"/ ∙ 𝑡05,1"$&
5 , (A4) 

This Hamiltonian can be applied to both one-orbital and multi-orbital cases. The 

subscripts 𝑚, 𝑛  can be eliminated when considering only one orbital per atom. 

Consequently, this is a universal expression of Hamiltonian in the frame of tight-

binding method. Following the routine of Slater and Koster, the multi-orbital 

parameters 𝑡05,1"$&  can be obtained from Slater-Koster parameters, as shown in Table 

SI. For example, the nearest neighbor hopping between 𝑝6  and 𝑝7  orbitals can be 

expressed by 𝑙𝑚(𝑉88# − 𝑉889), where l, m, and n are direction cosines of the vector 

from one atom to the nearest atom. 

 

Table SI: The hopping parameters between s and p orbitals 𝑡1,"  can be 

combined by Slater-Koster parameters using the direction cosine l, m, and n of 

the vector from the left atom to the right atom. Other matrix elements can be 

found by permuting indices [1]. 

𝑡:,: 𝑉::# 𝑡6,6 𝑙;𝑉88# + (1 − 𝑙;)𝑉889 

𝑡:,6 𝑙𝑉:8# 𝑡6,7 𝑙𝑚(𝑉88# − 𝑉889) 

𝑡6,: −𝑙𝑉:8# 𝑡7,< 𝑚𝑛(𝑉88# − 𝑉889) 
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Now we can carry out the process in a concrete crystal structure. In a crystal with 

displacement 𝑑< between A and B sublattices along the z direction as shown in Fig. 

S1(a), one atom A have four nearest (next nearest) neighbor atoms B (A) and the relative 

position vectors between one atom A and its neighbors thus become 𝒅((, 𝒅(;, 𝒅(=, 𝒅(> 

(𝒅;(, 𝒅;;, 𝒅;=, 𝒅;>) . The corresponding hopping parameters are 𝑡((, 𝑡(;, 𝑡(=, 𝑡(> 

(𝑡;(, 𝑡;;, 𝑡;=, 𝑡;>)  respectively, as shown in Fig. S1(a), some of which are equal 

according to the symmetry of crystal. Therefore, Eq. (A4) with only one atom orbital 

can be rewritten as 

 𝐻05(𝒌) = ∑ 𝑒+𝒌𝒅!& ∙ 𝑡055 . (A5) 

Especially, for the p4/nmm structure (D4h) in Fig. 1(a) in the main text, we can further 

simplify the Hamiltonian and obtain the first two terms of Eq. (1) in the main text as 

(taking 1/a as the unit of k)  

 𝐻@ = 𝑡( cos
A'
;
cos A(

;
𝜏6 + 𝑡;)cos 𝑘6 + cos 𝑘7,𝜏@,	 (A6) 

where 𝝉 is the Pauli matrix depicting the freedom of A and B sublattices. 

 

 

Fig. S1: (a) Position vectors from an atom A to its nearest (next nearest) neighbor atoms 

B(A) are labeled by 𝒅((, 𝒅(;, 𝒅(=, 𝒅(>	(𝒅;(, 𝒅;;, 𝒅;=, 𝒅;>) with green color and the 

corresponding hopping parameters are labeled by 𝑡((, 𝑡(;, 𝑡(=, 𝑡(>(𝑡;(, 𝑡;;, 𝑡;=, 𝑡;>) 

with black color. (b) 𝒅(0  and 𝒅(5  are the two nearest bonds connecting the next-

nearest neighbors 𝒅;0, along which the spin-orbital coupling occurs. 

 

We next consider the SOC term of the Hamiltonian in the multi-orbital case as 
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follows,   

 𝐻:BC = 𝜉@ U
D):*.D*:)

;
+ 𝐿<𝑠<X, (A7)    

where 𝑠± = 𝑠6 ± 𝑖𝑠7 and 𝐿± = 𝐿6 ± 𝑖𝐿7. Only the SOC between the same sublattice 

is taken into account. The concrete SOC term can be obtained by calculating the mean 

value of Eq. (A7). For example, the SOC term between |𝑝𝑧 ↑⟩ and |𝑝𝑥 ↓⟩ reads 

⟨𝑝𝑧 ↑ |𝐻:BC|𝑝𝑥 ↓⟩ = 𝜉@. A straightforward calculation leads to the on-site SOC in the 

representation {𝑠, 𝑝6 , 𝑝7 , 𝑝<}⨂{↑, ↓}: 

 𝐻:BC =
F+
;
ℎ:B, (A8) 

where all elements in ℎ:B can be found in Table SII. As we can see in the table, the 

SOC effect of one orbital is totally induced by another orbital and it is difficult to get 

SOC term just from a single orbital. 

 

Table SII: The values of SOC among atomic orbitals that are used in ℎ:B. 

The nonzero SOC terms only exist between orbits of the same site. σ6,7,< 

are Pauli matrices acting on the spin space. 

 𝑠 𝑝6 𝑝7 𝑝< 

𝑠 0 0 0 0 

𝑝6 0 0 −𝑖σ< 𝑖σ7 

𝑝7 0 𝑖σ< 0 −𝑖σ6 

𝑝< 0 −𝑖σ7 𝑖σ6 0 

 

However, we can also construct the single-orbital SOC Hamiltonian by symmetry 

consideration of the lattice. In the structure with C2h symmetry in Fig. 3(c) of main text, 

an electron hopping from an atom A to its next nearest neighbor atom A can feel an 

effective field coming from local asymmetry. Considering symmetry of the structure, 

the original SOC term − ℏ
>1+

,C,
(𝑭 × 𝒑) ∙ 𝝈 can be replaced by −𝑖𝜂H(𝒅(0 × 𝒅(5) ∙ 𝝈, 

where 𝜂H is a parameter and 𝒅(0 and 𝒅(5 are vectors along the two nearest bonds 

connecting the next nearest neighbors 𝒅;0 , as shown in Fig. S1(b). For a lattice 
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structure with C2h symmetry, to get the SOC term in k space, we should sum over the 

four next nearest neighbor SOC effects and the term 𝒅(0 × 𝒅(5 	in k space then becomes 

!𝒅!" × #−𝒅!#% +𝒅!! × #−𝒅!$%'𝑒%𝒌𝒅!" + !𝒅!$ × #−𝒅!!% +𝒅!# × #−𝒅!"%'𝑒%𝒌𝒅!#

+ !𝒅!! × #−𝒅!"% +𝒅!$ × #−𝒅!#%'𝑒%𝒌𝒅!! + !𝒅!# × #−𝒅!$% +𝒅!" × #−𝒅!!%'𝑒%𝒌𝒅!$ 

= !𝒅!" × #−𝒅!#% +𝒅!! × #−𝒅!$%'*𝑒%𝒌𝒅!" − 𝑒%𝒌𝒅!#+ + !𝒅!! × #−𝒅!"% +𝒅!$ × #−𝒅!#%'(𝑒%𝒌𝒅!! − 𝑒%𝒌𝒅!$) 

= !𝒅!" × #−𝒅!#% +𝒅!! × #−𝒅!$%'(2𝑖sin𝑘&𝑎) + !𝒅!! × #−𝒅!"% +𝒅!$ × #−𝒅!#%'#2𝑖sin𝑘'𝑏%. (A9)    

As for the p4/nmm (D4h) structure, the SOC term can be written as 

 𝐻:BC = 𝜆H)𝜎7𝑠𝑖𝑛𝑘6 − 𝜎6𝑠𝑖𝑛𝑘7,𝜏<. (A10)    

Together with Eq. (A6), we obtain the single-orbital Hamiltonian 𝐻(𝒌) = 𝐻@⨂𝜎@ +

𝐻:BC (𝜎@ is 2 × 2 identity matrix), which is just Eq. (1) in the main text.  

 

B. ANALYTICAL SOLUTION OF THE SINGLE-ORBITAL MODEL 

As mentioned above, we have obtained Eq. (1) in the main text together with Eq. 

(A6) and Eq. (10), in which we have selected the basis to be (|A ↑⟩, |A ↓⟩, |B ↑⟩, |B ↓⟩). 

By defining 𝑀 = 𝑡(cos(𝑘6/2)cos(𝑘7/2)	 , 𝑁 = 𝑡;(cos𝑘6 + cos𝑘7) ， 	𝐷. =

𝜆(sin𝑘7 + 𝑖sin𝑘6), 𝐷3 = 𝐷.
I,	𝐹 = t𝑀; + 𝐷.𝐷3, we can rewrite the Hamiltonian in 

the form of simplified matrix:  

 𝐻 = u

𝑁 −𝐷.
−𝐷3 𝑁

𝑀		 0
0		 𝑀

𝑀		 			0
0		 			𝑀

𝑁 𝐷.
𝐷3 𝑁

w. (A11) 

The operators of three physical properties 𝑃y:JC,	𝑺{$ and 	𝑺{& can be written in matrix 

form 

 𝑺{$ = |𝐴⟩⟨𝐴|𝝈 = 𝜏$𝝈, 

 𝑺{& = |𝐵⟩⟨𝐵|𝝈 = 𝜏&𝝈, (A12) 
 𝑃y:JC = |𝐴⟩⟨𝐴| − |𝐵⟩⟨𝐵| = 𝜏<,  
where 𝜏< and 𝝈 are the Pauli matrices on orbital and spin degrees of freedom and 𝜏$ 

and 𝜏& are projection operators on A and B sectors 

 𝜏$ = U1 0
0 0X , 𝜏& = U0 0

0 1X. (A13) 

From the above we can find the relation between sector polarization and projected spin 
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polarization, 𝑺{$ − 𝑺{& = 𝑃y:JC𝝈. To demonstrate these physical properties, we should 

solve the Hamiltonian in Eq. (A11) first. By solving it analytically, we can get the eigen 

energies to be 𝐸(,; = 𝑁 − 𝐹 and 𝐸=,> = 𝑁 + 𝐹 with four orthogonal eigen functions: 

 𝜙! =
!
√#
$

1
𝐷$/𝐹
−𝑀/𝐹
0

, ,𝜙# =
!
√#
$

0
−𝑀/𝐹
−𝐷%/𝐹
1

, ,𝜙& =
!
√#
$

1
−𝐷$/𝐹
𝑀/𝐹
0

, ,𝜙' =
!
√#
$

0
𝑀/𝐹
𝐷%/𝐹
1

,. (A14) 

All of the energies and eigen functions are functions of wavevector k, from which we 

can readily get analytical expressions of other physical quantities. The results of sector 

polarization and HSP can be found in the main text, in which the origin of strong HSP 

at the BZ is also demonstrated. 

Actually, the solution in Eq. (A14) is just a particular solution. More generally, by 

applying linear combinations of 𝜙(, 𝜙; (𝜙=, 𝜙>) we can form different sets of basis 

of the degenerate subspace with eigen energy 𝐸(,; (𝐸=,>). Then, it seems that there is a 

gauge problem here. To check whether HSP is gauge invariant, we can casually 

construct a set of new doubly degenerate states 𝜙′( = 𝑐(𝜙( + 𝑐;𝜙;  and 𝜙′; =

𝑐=𝜙( + 𝑐>𝜙; . We then investigate whether the HSP remains unchanged after this 

transformation. Then, to ensure the basis transforming matrix to be unitary we should 

require 𝑐>∗ ∕ 𝑐=∗ = −𝑐( ∕ 𝑐;  and the new degenerate states become 𝜙′( = 𝑐(𝜙( +

𝑐;𝜙; and 𝜙′; = 𝑐;∗𝜙( − 𝑐(∗𝜙;, where |𝑐(|; + |𝑐;|; = 1. Using 𝜙′( and 𝜙′;, we get 

the physical properties at different coefficients 𝑐(, which is shown in Fig. S2.  

𝑃(:JC =
1

2
(|𝑐1|2 − |𝑐2|2) +

1

2𝐹2
[(|𝑐2|2 − |𝑐1|2)(𝑀2 − 𝐷2) − 2𝑀(𝑐1∗𝑐2𝐷+ + 𝑐1𝑐2∗𝐷−)]  

𝑃;:JC =
1

2
(|𝑐2|2 − |𝑐1|2) +

1

2𝐹2
[−(|𝑐2|2 − |𝑐1|2)(𝑀2 − 𝐷2) + 2𝑀(𝑐1∗𝑐2𝐷+ + 𝑐1𝑐2∗𝐷−)]  

𝑠!./ = !
#
[|𝑐!|#(𝐷% + 𝐷$) − 𝑀(𝑐!𝑐#∗ + 𝑐!∗𝑐#)]/𝐹  (A15) 

𝑠#./ = !
#
[|𝑐#|#(𝐷% + 𝐷$) + 𝑀(𝑐!𝑐#∗ + 𝑐!∗𝑐#)]/𝐹  

𝑠!0/ = 1
#
[|𝑐!|#(𝐷% − 𝐷$) − 𝑀(𝑐!𝑐#∗ − 𝑐!∗𝑐#)]/𝐹  

𝑠#0/ = 1
#
[|𝑐#|#(𝐷% − 𝐷$) + 𝑀(𝑐!𝑐#∗ − 𝑐!∗𝑐#)]/𝐹.  

Both of 𝑃":JC and 𝑠"$ for a single energy state vary with the coefficient 𝑐(, where the 

subscript n means on the state of 𝜙′". The gauge dependence is because one cannot 
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measure a physical property of just one single state in a degenerate system. Adding the 

effect of 𝐸( and 𝐸;, the expectation values of the components of HSP are 𝑠((.;)6$ =

𝑠(6$ + 𝑠;6$ = (
;
[(𝐷. + 𝐷3)]/𝐹 , 𝑠((.;)7$ = 𝑠(7$ + 𝑠;7$ = +

;
[(𝐷. − 𝐷3)]/𝐹 , which 

obviously have no relation with the coefficient 𝑐(. The result is shown in Fig. S2(e) 

and we only figure one green line as the property does not change depending on the 

coefficient 𝑐( . This indicate that HSP is indeed a physical property that is gauge 

independent. The value in the Fig. S2(e) is nonzero and stable, which can benefit its 

measurement by spin-ARPES. We also find that the value reaches its maximum at the 

BZ boundary X-M as the hopping effect between A and B disappears, indicating strong 

HSP protected by nonsymmorphic symmetry. 

 

 

 
Fig. S2: (a) and (b) are sector polarizations 𝑃":JC  of 𝐸(  and 𝐸;  on different 

coefficients 𝑐(. The sector polarizations of the two states are in opposite value, which 

means the total effect of them is zero. This is because sector A and sector B are in equal 

status in a centrosymmetric system and the expectation value should be zero. (c) and 

(d) are the sector projected spin polarizations 𝑆𝕟	$  on sector A for 𝐸(  and 𝐸;  at 
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different coefficients 𝑐(. The same with 𝑃":JC, the values of 𝑆𝕟	$  also vary with 𝑐(. (e) 

The expectation values of 𝑆𝕟	$  for both 𝐸( and 𝐸; at different 𝑐(. The values are all 

the same and we only figure one line of them, indicating that HSP does not vary with 

basis transformation.  

 

C. CORRESPONDENCE BETWEEN LAYER GROUPS AND 3D SPACE 
GROUPS 

  Layer groups are 3D groups with 2D translation symmetry, but we can still use 3D 

crystal systems and point groups to classify layer groups [2]. All layer groups, by 

definition, have no translation symmetry along basis vector c which prohibits certain 

symmetry operations, for instance, screw rotation along the c axis, more than 2-fold 

rotation with the axis perpendicular to c, etc. Therefore, cubic crystal system does not 

exist for layer groups.  

  For each layer group and a randomly chosen position within the empty lattice, layer 

group generators provided by the Bilbao Crystallographic Server [3] produce a set of 

equivalent positions, forming a set of general positions (SGP). We thus construct a 

“pseudo crystal structure” by filling this SGP by atoms into the empty lattice. Then, we 

can get another SGP by choosing another random position and following the same way. 

After the pseudo crystal structure is constructed by inputting several SGP, we can easily 

obtain the corresponding 3D space group from the existing modules such as ASE [4] 

and Spglib [5]. 

We have tried to put n (n = 1, 2, …6) SGP in the empty lattice for each layer groups. 

We found that space groups corresponding to a particular layer group converge with n > 

2, for which the correspondence between space group and layer group is given (see also 

Table SIII). We note that two layer groups may correspond to the same space group for 

monoclinic and orthorhombic layer groups which is due to the inequivalence of c axis 

and the other two axis, including (L3, L8), (L4, L11), (L5, L12), (L6, L14), (L7, L16), 

(L23, L27), (L24, L31), (L28, L29) and (L40, L41). Such situation does not appear for 

tetragonal, trigonal and hexagonal layer groups since 4-fold, 3-fold, and 6-fold rotation 

axes or rotation-reflection axes must be along the c axis. Finally, we note that our results 
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for n > 2 are mostly consistent with those of Ref. [6], which used a different method 

called geometric algebra to construct the correspondence, except for layer group L35 

which correspond to space group 38. 

 

Table SIII. Correspondence between layer groups and space groups with different sets 

of general positions (SGP). The underlined space groups are different from the space 

groups determined by more than 2 SGP. 

Crystal system Layer group 

Space group 

> 2 SGP 2 SGP 1 SGP 

Triclinic L1 p1 1 P1 2 P1� 10 P2/m 

 L2 p1� 2 P1� 2 P1� 2 P1� 

Monoclinic L3 p112 3 P2 3 P2 10 P2/m 

 L4 p11m 6 Pm 6 Pm 10 P2/m 

 L5 p11a 7 Pc 7 Pc 13 P2/c 

 L6 p112/m 10 P2/m 10 P2/m 10 P2/m 

 L7 p112/a 13 P2/c 13 P2/c 13 P2/c 

 L8 p211 3 P2 3 P2 10 P2/m 

 L9 p2111 4 P21 4 P21 11 P21/m 

 L10 c211 5 C2 5 C2 12 C2/m 

 L11 pm11 6 Pm 6 Pm 47 Pmmm 

 L12 pb11 7 Pc 7 Pc 51 Pmma 

 L13 cm11 8 Cm 8 Cm 65 Cmmm 

 L14 p2/m11 10 P2/m 10 P2/m 10 P2/m 

 L15 p21/m11 11 P21/m 11 P21/m 11 P21/m 

 L16 p2/b11 13 P2/c 13 P2/c 13 P2/c 

 L17 p21/b11 14 P21/c 14 P21/c 14 P21/c 

 L18 c2/m11 12 C2/m 12 C2/m 12 C2/m 

Orthorhombic L19 p222 16 P222 16 P222 16 P222 

 L20 p2122 17 P2221 17 P2221 17 P2221 
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 L21 p21212 18 P21212 18 P21212 18 P21212 

 L22 c222 21 C222 21 C222 21 C222 

 L23 pmm2 25 Pmm2 25 Pmm2 47 Pmmm 

 L24 pma2 28 Pma2 28 Pma2 51 Pmma 

 L25 pba2 32 Pba2 32 Pba2 55 Pbam 

 L26 cmm2 35 Cmm2 35 Cmm2 65 Cmmm 

 L27 pm2m 25 Pmm2 25 Pmm2 47 Pmmm 

 L28 pm21b 26 Pmc21 26 Pmc21 51 Pmma 

 L29 pb21m 26 Pmc21 26 Pmc21 51 Pmma 

 L30 pb2b 27 Pcc2 27 Pcc2 49 Pccm 

 L31 pm2a 28 Pma2 28 Pma2 51 Pmma 

 L32 pm21n 31 Pmn21 31 Pmn21 59 Pmmn 

 L33 pb21a 29 Pca21 29 Pca21 57 Pbcm 

 L34 pb2n 30 Pnc2 30 Pnc2 53 Pmna 

 L35 cm2m 38 Amm2 38 Amm2 65 Cmmm 

 L36 cm2e 39 Aem2 39 Aem2 67 Cmme 

 L37 pmmm 47 Pmmm 47 Pmmm 47 Pmmm 

 L38 pmaa 49 Pccm 49 Pccm 49 Pccm 

 L39 pban 50 Pban 50 Pban 50 Pban 

 L40 pmam 51 Pmma 51 Pmma 51 Pmma 

 L41 pmma 51 Pmma 51 Pmma 51 Pmma 

 L42 pman 53 Pmna 53 Pmna 53 Pmna 

 L43 pbaa 54 Pcca 54 Pcca 54 Pcca 

 L44 pbam 55 Pbam 55 Pbam 55 Pbam 

 L45 pbma 57 Pbcm 57 Pbcm 57 Pbcm 

 L46 pmmn 59 Pmmn 59 Pmmn 59 Pmmn 

 L47 cmmm 65 Cmmm 65 Cmmm 65 Cmmm 

 L48 cmme 67 Cmme 67 Cmme 67 Cmme 

Tetragonal L49 p4 75 P4 75 P4 83 P4/m 
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 L50 p4� 81 P4� 81 P4� 81 P4� 

 L51 p4/m 83 P4/m 83 P4/m 83 P4/m 

 L52 p4/n 85 P4/n 85 P4/n 85 P4/n 

 L53 p422 89 P422 89 P422 89 P422 

 L54 p4212 90 P4212 90 P4212 90 P4212 

 L55 p4mm 99 P4mm 99 P4mm 123 P4/mmm 

 L56 p4bm 100 P4bm 100 P4bm 127 P4/mbm 

 L57 p4�2m 111 P4�2m 111 P4�2m 111 P4�2m 

 L58 p4�21m 113 P4�21m 113 P4�21m 113 P4�21m 

 L59 p4�m2 115 P4�m2 115 P4�m2 115 P4�m2 

 L60 p4�b2 117 P4�b2 117 P4�b2 117 P4�b2 

 L61 p4/mmm 123 P4/mmm 123 P4/mmm 123 P4/mmm 

 L62 p4/nbm 125 P4/nbm 125 P4/nbm 125 P4/nbm 

 L63 p4/mbm 127 P4/mbm 127 P4/mbm 127 P4/mbm 

 L64 p4/nmm 129 P4/nmm 129 P4/nmm 129 P4/nmm 

Trigonal L65 p3 143 P3 143 P3 187 P6�m2 

 L66 p3� 147 P3� 147 P3� 164 P3�m1 

 L67 p312 149 P312 149 P312 187 P6�m2 

 L68 p321 150 P321 150 P321 164 P3�m1 

 L69 p3m1 156 P3m1 156 P3m1 187 P6�m2 

 L70 p31m 157 P31m 157 P31m 191 P6/mmm 

 L71 p3�1m 162 P3�1m 162 P3�1m 191 P6/mmm 

 L72 p3�m1 164 P3�m1 164 P3�m1 164 P3�m1 

Hexagonal L73 p6 168 P6 168 P6 191 P6/mmm 

 L74 p6� 174 P6� 174 P6� 187 P6�m2 

 L75 p6/m 175 P6/m 175 P6/m 191 P6/mmm 

 L76 p622 177 P622 177 P622 191 P6/mmm 

 L77 p6mm 183 P6mm 183 P6mm 191 P6/mmm 

 L78 p6�m2 187 P6�m2 187 P6�m2 187 P6�m2 
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 L79 p6�2m 189 P6�2m 189 P6�2m 191 P6/mmm 

 L80 p6/mmm 191 P6/mmm 191 P6/mmm 191 P6/mmm 

 

 

D. MULTI-ORBITAL TIGHT-BINDING MODEL AND MATERIAL 

REALIZATION 

Following the same approach of getting Eq. (1) in the main text, we can obtain the 

multi-orbital Hamiltonian of the p4/nmm system from Eq. (A4) and Eq. (A8), where 

nonsymmorphic symmetry can be guaranteed by a displacement in the z direction from 

the structure parameters 𝒅05. The hopping parameters 𝑡1," can be combined by Slater-

Koster parameters as shown in Table SI at Section A, where the four parameters Vssσ , 

Vspσ ,Vppσ, and Vppπ correspond to the σ and π bonds formed by s and p orbitals.  

Most of the hidden spin properties discussed during the discussion of single-orbital 

Hamiltonian, such as strong HSP protected by nonsymmorphic symmetry, are also 

found here. That shows the consistency between our single-orbital model and multi-

orbital model. The phenomenon of HSP also exists over the whole Brillouin zone 

despite that the amplitudes for various bands change with the momentum in different 

manners. This is because the dominant orbital component of one band can vary with 𝒌. 

HSP of s or pz dominated band is immune to hopping effect at the Brillouin zone 

boundary protected by nonsymmorphic symmetry while suffers significant suppression 

near the Γ point, as shown in Fig. S4(a), which is in agreement with results obtained 

in single-orbital model. With a displacement of sector A along the x direction, the 

symmetry of D4h structure is reduced to C2h by breaking the screwing axis along the x 

direction, resulting in a smaller HSP strength along X-M in the Brillouin zone as shown 

in Fig. S4(b). On the other hand, HSP of a px/py dominant band forms a Rashba-type 

helical spin texture with a large value around the Γ point, as shown in Fig. S4(c). To 

illustrate this in material base, we also perform the first-principle calculation on a 

representative multi-orbital material Bi2Cl2O2 with p4/nmm symmetry. As shown in Fig. 

S4(d), we find significant Rashba-type HSP around the Γ point for the second highest, 
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px/py dominated valance band of Bi2Cl2O2, which is good agreement with our multi-

orbital tight-binding model.  

 

 

Fig. S4: Projected spin texture onto sector A (red) and B (blue) around the M point for 

a s/pz dominanted band from the multi-orbital model with (a) D4h and (b) C2h symmetry. 

Projected spin texture around the Γ point for a px/py dominanted band from (c) the 

multi-orbital model, and (d) first-principle calculation on monolayer Bi2Cl2O2. 
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