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The detection of topological phases of matter has become a central issue in recent years. Conventionally,
the realization of a specific topological phase in condensed matter physics relies on probing the underlying
surface band dispersion or quantum transport signature of a real material, which may be imperfect or even
absent. On the other hand, quantum simulation offers an alternative approach to directly measure the
topological invariant on a universal quantum computer. However, experimentally demonstrating high-
dimensional topological phases remains a challenge due to the technical limitations of current experimental
platforms. Here, we investigate the three-dimensional topological insulators in the AIII (chiral unitary)
symmetry class, which yet lack experimental realization. Using the nuclear magnetic resonance system, we
experimentally demonstrate their topological properties, where a dynamical quenching approach is adopted
and the dynamical bulk-boundary correspondence in the momentum space is observed. As a result, the
topological invariants are measured with high precision on the band-inversion surface, exhibiting
robustness to the decoherence effect. Our Letter paves the way toward the quantum simulation of
topological phases of matter in higher dimensions and more complex systems through controllable
quantum phases transitions.
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Introduction.—The past decades have witnessed a
new era of condensed matter physics after the milestone
discovery of the quantum Hall [1,2], quantum spin
Hall [3–5], and quantum anomalous Hall effect [6–9] that
established the link between topology and electronic
structure. Topological insulators, in general, are such
fermionic phases with a gapped n-dimensional ðnDÞ bulk
state but gapless ðn − 1ÞD boundary states protected by
the generic symmetries of the Hamiltonian [4,5,10–15].
Considering time-reversal symmetry, particle-hole sym-
metry, and their combination, chiral symmetry, there are
ten topological classes within the framework of Altland-
Zirnbauer classification [16,17]. While the central physics
of the topological nature can be sketched within a few
energy bands, such a clean picture at the Fermi level in
condensed matter systems is extremely difficult to realize.
This is because the huge amount of electrons in complex
materials leads to dense manifold of states as a visual
effect, named band spaghetti [18], not to mention other
detrimental factors such as impurities and domains. As a
result, although the topological insulators of A [2D Cr
doped (Bi,Sb)Te] [19,20], AII (3D Bi2Se3) [21], and DIII
class (3D B phase of 3He) [22,23] have been experimentally
confirmed, several topological classes, e.g., 2D chiral
p-wave (D class) and d-wave topological superconductors
(C class), are still in controversy among various material
candidates, such as Sr2RuO4 [24,25], SrPtAs [26,27], and

URu2Si2 [28,29], etc. More importantly, there are still a
number of topological classes waiting for realization.
Recently, quantum simulation has also demonstrated a

powerful tool [30–37] to investigate topological phases
accompanied with the emergence of modern quantum
technologies. As the parameters of the simulator are highly
controllable, it can directly work on a minimal Hamiltonian
and thus get rid of the complication of real materials. At
present, quantum simulation of topological systems has
been carried out in cold atoms [30,36,38–41], super-
conducting circuits [42], and nitrogen-vacancy (NV)
defects in diamond [35]. Interestingly, all of these works
focused on 1D and 2D topological insulators or their
derivatives. For example, the 1D AIII topological
Anderson insulator has been realized in disordered atomic
wires [43], the 2D quantum anomalous Hall insulator has
been simulated in the ultracold 87Rb gas [44], and the 3D
Weyl semimetal with the same topological nature of a 2D
Chern insulator has been simulated by single-qubit super-
conducting circuits [45]. Hence, the experimental realiza-
tion of a 3D topological insulator is still lacking.
The minimum models of 1D and 2D topological insula-

tors can be described within a two-band Hamiltonian
manipulated by a single-qubit system. In contrast, the
simulation of a 3D topological insulator requires at least
a four-band model within in a 2-qubit system [46].
Meanwhile, the necessity of realizing 3D topological
insulators also lies in the possibility for exploring more
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emergent topological phenomena, such as higher-order
bulk-surface correspondence [47]. Hence, in this Letter,
we demonstrate for the first time quantum simulation of a
3D AIII class (chiral unitary) topological insulator in a
nuclear magnetic resonance (NMR) quantum simulator.
Such a topological class only respects chiral symmetry,
without any counterparts in condensed matter physics yet.
Zhang et al. [48–50] proposed a dynamical quench
approach to uncover topology and bulk-boundary corre-
spondence for high-dimensional topological phases. One
measures the time-averaged spin texture on the nodes of
band inversion when turning off the spin-orbit coupling,
i.e., band-inversion surface (BIS), via quenching the
Hamiltonian of the system in the topological region. In
particular, a 3D topological phase can be encoded into a 2D
subregion to reduce the complexity of characterizing
topological patterns in experiment.
3D AIII model.—In this Letter, we realize the 3D AIII

class topological insulator with the Hamiltonian

HðkÞ ¼ h0σ1zσ2x þ h1σ1x þ h2σ1y þ h3σ1zσ2z : ð1Þ

Here, h0 ¼ mz − ξ0ðcos kx þ cos ky þ cos kzÞ characterizes
the dispersion of the decoupled bands, while
h1 ¼ ξSO sin kx, h2 ¼ ξSO sin ky, and h3 ¼ ξSO sin kz
denote the spin-orbit (SO) field. In this model, h0ðkÞ ¼
0 in the momentum space defines the BIS. Figure 1(a)
presents a band structure of a 3D topological insulator.

Both of the valence band and the conduction band are
doubly degenerate due to the chiral symmetry. According
to the classification theory at equilibrium, the 3D topo-
logical phases of this model include three nontrivial areas
dictated bymz: (i) winding number ν3 ¼ 2when jmzj < ξ0;
(ii) ν3 ¼ −1 when ξ0 < mz < 3ξ0; and (iii) ν3 ¼ −1 when
−3ξ0 < mz < −ξ0. The region with jmzj > 3ξ0 has only
trivial phases.
In nonequilibrium classification, the topological invari-

ant of HðkÞ described by the 3D winding number can be
determined in a dynamical quench process. At t < 0, the
system stays in the ground state ρ0 of the prequench HðkÞ
with mz ≫ ξ0, and then starts to evolve under the post-
quench HðkÞ by suddenly changing mz to a nontrivial
value. Denoting the spin texture by γi (here γ1 ¼ σ1x,
γ2 ¼ σ1y, and γ3 ¼ σ1zσ

2
z), its expectation value under a

given evolution time t is thus

hγiðk; tÞi ¼ Trðγie−iHðkÞtρ0eiHðkÞtÞ: ð2Þ

On the BIS, the time-averaged spin texture hγiðkÞi
vanishes, so it can be employed to characterize the
quench dynamics. However, to determine the topological
invariant requires more effort, in that the difference of
hγiðkÞi across the BIS needs to be acquired. This para-
meter is quantified by a dynamical spin-texture field
giðkÞ ¼ −∂hγiðkÞi=Nk∂k⊥, where Nk is a normalization
coefficient and k⊥ is the direction perpendicular to the BIS
from the inside out. This g⃗ðkÞ uniquely determines the
contour of the topological patterns, leading to the direct
acquisition of the 3D winding number.
Concisely, to detect the topological phases in experiment

using the quench process, one needs to first locate the BIS
and, consequently, measure the dynamical spin-texture
field perpendicular to the BIS. In the following, we describe
our experiment of detecting the topological number in the
3D AIII topological insulators in detail.
Experimental settings.—The demonstration is performed

on the NMR. The sample is the 13C-labeled chloroform
dissolved in acetone-d6 as shown in Fig. 1(b). The 13C and
1H spin are used as two qubits, where each qubit can be
controlled by radio-frequency (rf) fields, respectively. The
total Hamiltonian is

HNMR ¼ πJ
2
σ1zσ

2
z þ

X2
i¼1

πBiðcosϕiσ
i
x þ sinϕiσ

i
yÞ; ð3Þ

where J ¼ 215 Hz is the coupling strength between qubits,
and Bi and ϕi are tunable parameters (amplitude and phase)
of the rf field. All experiments are carried out on a Bruker
AVANCE 600 MHz spectrometer at 298 K.
The key concept in quantum simulation is to map

the experimental Hamiltonian in Eq. (3) to the problem
Hamiltonian in Eq. (1), i.e., HNMR → HðkÞ. Here, we
adopt the Trotter-Suzuki formula [51,52] by decomposing

FIG. 1. (a) Band structure of a 3D topological insulator with the
Hamiltonian HðkÞ when mz ¼ 0.86ξ0 and kz ¼ π=6. (b) Mole-
cular structure of 13C-labeled chloroform with the coupling
J ¼ 215 Hz and the splitting energy levels under a magnetic
field. (c) Pulse sequence using the Trotter approximation to
simulate the topological Hamiltonian HðkÞ when h0 < 0 and
h3 < 0. The green circle represents a rotation around the x axis
with the pulse amplitude A and the phase ϕ. The orange circles
represent the y-axis rotations with the displaying angles. The gray
and blue blocks are the free evolutions under the J-coupling
Hamiltonian with the evolution time Tðh3Þ ¼ ð2jh3j=πJÞτ and
Tðh0Þ ¼ ð2jh0j=πJÞτ, respectively.
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the desired Hamiltonian dynamics into repeated evolutions
of elementary Hamiltonians. In regard to the problem
Hamiltonian in Eq. (1), the evolution can be approximated
by

U ¼ e−iHðkÞT ≈ ðe−iHzxτe−iHzzτe−iHx;yτÞm; ð4Þ

where Hzx ¼ h0σ1zσ2x, Hzz ¼ h3σ1zσ2z , Hx;y ¼ h1σ1x þ h2σ1y,
T is the evolving time, and m ¼ T=τ is the Trotter number.
The value of m determines the precision of the approxi-
mation result. In NMR, each term on the right-hand side of
Eq. (4) can be faithfully realized: Hzx and Hzz using the
J-coupling evolution plus single-qubit rotations and Hx;y
using a hard rf pulse acting on the first qubit. Figure 1(c)
presents a NMR pulse sequence to realize the simulation of
HðkÞ when h0 < 0 and h3 < 0.
Overall, the entire experiment to simulate the topological

phases of the AIII class model in Eq. (1) includes four
steps. (1) Prepare the ground state of the prequench
HamiltonianHðkÞwithmz ≫ jξ0j. We choose it as positive
infinity, so the corresponding ground state is simply
ðj00i − j01iÞ= ffiffiffi

2
p

. In NMR, it is prepared by creating a
(pseudo) pure state j00i and then applying a −ðπ=2Þ
rotation about the y axis on the second qubit.
(2) Quench mz from positive infinity, which produces a
trivial phase to mz < j3ξ0j, which leads to a nontrivial
topological phase. We experimentally realize this quench
dynamics using the Trotter approximation in Eq. (4).
(3) Measure the time-averaged spin texture hγii to obtain
the BIS where h0ðkÞ ¼ 0. (4) Detect the dynamical
spin-texture field g⃗ðkÞ according to the slope of hγii across
the BIS. These expectation values are directly measured
using standard NMR readout pulses, and the topological
number of the phase can be uniquely determined by the
topological patterns of g⃗ðkÞ on the BIS.
Here, we experimentally show that all three nontrivial

topological phases can be detected at nonequilibrium using
the quench dynamics approach, demonstrating the bulk-
boundary correspondence. In experiment, the Hamiltonian
in Eq. (1) is chosen as ξ0 ¼ 4ξSO with ξSO ¼ 400. The
evolution time T after quenching mz ranges from 0.5 to
5 ms with an increment 0.5 ms, meaning 10 points for each
time-averaged measurement. During the Trotter approxi-
mation in Eq. (4), we fix the time slice τ ¼ 0.25 ms, so
the corresponding Trotter number m ¼ T=τ ranges from 2
to 20. Above are all of the basic parameters for our NMR
quantum simulation experiment.
Locating the BIS.—Next is to locate the BIS by

measuring hγii in the momentum space, which satisfies
h0 ¼ mz − ξ0ðcos kx þ cos ky þ cos kzÞ ¼ 0. For simpli-
city and better visualization, we fix kz ¼ π=6 and discretize
kx; ky ∈ ½−π; π� into a 24 × 24 lattice. Actually, this is a 2D
slice (call it S) out of the entire 3D momentum space, in
which we draw the topological pattern by measuring the
time-averaged spin texture hγii. The Hamiltonian HðkÞ is

quenched along z axis with the parametermz frommz ≫ ξ0
to mz ¼ 0.86ξ0. As shown in Fig. 2(a), the experimental
reconstruction of hγii in the slice S clearly illustrates that
there is a square topological pattern, which is an inter-
section between the BIS and S. This pattern corresponds to
a 3D topological phase with the winding number ν3 ¼ 2. To
obtain the BIS in Fig. 2(a), we first measure the spin texture
hγii as a function of the evolution time T with T ∈ ½0.5; 5�
in the unit of milliseconds, and then calculate its time
average. Figure 2(b) shows a typical example of the value
of hγii with respect to kx when ky ¼ −π=2 and kz ¼ π=6.
Figure 2(c) shows the time-averaged spin texture hγii in the
setting of Fig. 2(b), which is clearly a perfect match with
the theoretical prediction.
Measuring the winding number.—After locating the BIS,

we detect the dynamical spin-texture field g⃗ðkÞ according
to the slope of hγii across the BIS. As the AIII class model
described by Eq. (1) implies three nontrivial topological
phases, we elaborate on the results of the three cases,
respectively.
Case I: jmzj < ξ0: We quench the Hamiltonian HðkÞ

along the z axis from a trivial phase to a nontrivial phase
with mz ¼ 0. We choose two surfaces near the BIS that
S−∶h0 ¼ −0.1ξ0 and Sþ∶h0 ¼ 0.1ξ0 to measure the time-
averaged spin operators hγii, where on each surface a total
number of 195 points are sampled. Figure 3(a) presents the
measured values of hγii for S− and Sþ, apparently dis-
playing that the sign of the values on these two surfaces are
opposite. The dynamical spin-texture field g⃗ðkÞ is hence
computed from the differences of hγii between two

(a)

(b)

(c)

FIG. 2. Experimental BIS when quenchingmz frommz ≫ ξ0 to
mz ¼ 0.86ξ0. (a) Time-averaged spin textures for different hγii in
a 2D slice of the 3D momentum space by fixing kz ¼ π=6. For all
γi’s, the characterized BIS is a diamondlike pattern. (b)–(c) One
typical example of how to obtain the time-averaged spin texture,
corresponding to the cross section where ky ¼ −π=2 in (a).
(b) Experimental data of the expectation values of hγii for
different evolution time T ∈ ½0.5; 5� (unit: milliseconds) with
respect to kx, while (c) shows the time-averaged results where the
circles are experimental data and the solid curve is the theory.
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surfaces, where the result is shown in the center of Fig. 3(a).
The pattern of g⃗ðkÞ corresponds to a winding number
ν3 ¼ 2, demonstrating that the topological feature of the 3D
AIII class model can be detected via the dynamics at the
BIS, i.e., the bulk-boundary correspondence.
Case II: ξ0 < mz < 3ξ0: We quench the parameter mz

from a trivial phase to a nontrivial phase with mz ¼ 1.3ξ0.
The two surfaces near the BIS are also chosen as S−
and Sþ to be consistent with case I. Figure 3(b) presents
the measured values of hγii on these two surfaces.

Obviously, the sign is flipped when hγii passes through
the BIS from the inside out. To determine the topological
number, we measure the dynamical spin-texture field
g⃗ðkÞ at the BIS by computing by the differences of hγii
between the two surfaces. The center of Fig. 3(b) presents
the direction of g⃗ðkÞ across the BIS, whose pattern
corresponds to a 3D topological phase with the winding
number ν3 ¼ −1.
Case III: −3ξ0 < mz < −ξ0: This case is equivalent to

case II with the same winding number ν3 ¼ −1, while
manifesting a closed BIS centered at the corner of the
Brillouin zone. We quench the parameter to mz ¼ −1.3ξ0,
with the spin textures in Fig. 3(c) and g⃗ðkÞ in the center of
Fig. 3(c).
To experimentally determine an approximate value of the

topological invariant, one can count the number of circles
and g⃗ðkÞ directions on the BIS in the 2D case [35]. In the
3D case, the topological pattern becomes much more
complex, so we choose to calculate the experimental
winding number mathematically by [48]

ν3 ¼
1

8π

X
j

ϵmnl

Z
BISj

d2k · ĥmð∇ĥn ×∇ĥlÞ: ð5Þ

Here ν3 is the winding number of the given 3D system, ϵmnl

stands for the 3D Levi-Civita symbol, ĥ is the normalized
version of vector h with m, n, and l being the three
coordinates. The sum of j ensures that all components of

BIS have been included in the integral. Based on the
experimental data, the calculated winding numbers for
cases I–III are νexp3 ¼ 1.960, −0.985, and −0.988, respec-
tively. They agree well with the theoretical predictions
where the values are νth3 ¼ 2, −1, and −1, with the
inaccuracies in terms of percentage as 2.0%, 1.5%, and
1.2%, respectively. Moreover, we analyze the errors from
the experimental data by computing the average error for all
data points. It turns out to be 0.70%, 0.28%, and 0.28% for
the three cases, which is reasonable for present quantum
simulation experiments. Therefore, we conclude that the
winding numbers as well as the topological phases of the
AIII model have been observed in experiment.
Discussion.—This experiment demonstrates that a

quantum simulator with state-of-the-art control technolo-
gies can be employed to investigate topological phases in
high dimensions. The quench dynamics approach offers a
practical way toward detecting topological phases at
nonequilibrium. Although quantum simulation of topologi-
cal phases has been realized in diverse quantum systems,
each experimental platform has its own advantages and
drawbacks. For example, the cold-atom system is genuinely
an outstanding quantum simulator, but the target problem
needs to be meticulously designed as the individual control
of atoms is hard [44]; the superconducting circuit is a solid-
state system of rapid development and advanced controls,
but it requires extremely low temperature [53]; the NV
center is a solid-spin system at ambient conditions, but
the scalability is challenging and its current quantum
simulation lies in a few qubits level [54]; the NMR system
has good controllability of up to 12-qubit quantum
simulators to tackle versatile Hamiltonians, but it has lack
of scalability [55,56].
There are two more issues to be resolved. (1) The quench

approach requires measuring the time evolution of the
spin textures, implying a relatively long evolving time
and potential errors due to decoherence. As quantum
processors are very vulnerable to decoherence, it is neces-
sary to analyze whether this approach is robust against

FIG. 3. (a)–(c) Measured time-averaged spin textures hγii on the two surfaces S− and Sþ for the three nontrivial topological phases in
the momentum space (kx; ky; kz ∈ ½−π; π�), respectively. The signs of hγii are reversed on the two surfaces across the BIS, which are
used to compute the dynamical spin-texture field g⃗ðkÞ. The color bar ranges from −0.5 (blue) to 0.5 (red). The center subfigures are g⃗ðkÞ
across the BIS (h0 ¼ 0) for the three nontrivial topological phases. These values are determined by computing the variation of the values
hγii at the two surfaces S− and Sþ.
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decoherence. In our system, we give a positive answer, as,
on one hand, the experiment agrees well with the theory
even in the presence of decoherence, and, on the other, the
numerical simulation also shows that the decoherence
effect is well resisted (see Supplemental Material [57]).
Similar results are discussed in Ref. [35]. (2) The scalability
is also an issue. For high-dimensional topological phases,
to locate the BIS can be a challenging task. In experiment,
one has to, in principle, discretize the momentum space into
many pixels and measure the spin texture at each pixel to
eventually draw the BIS that h0ðkÞ ¼ 0. This takes huge
efforts, and one possible solution is to utilize some prior
knowledge that may determine the BIS roughly. At present,
this issue deserves further exploration in theory.
In summary, we have simulated the 3D AIII class

topological insulator using the quench dynamics approach.
As the first experiment to simulate the topological insulator
phases beyond 2D using quantum processors, we anticipate
quantum simulation to be an alternative way to study novel
topological phases that lack experimental realization in
condensed matter systems. Moreover, our work paves an
avenue to further explore the other unconventional 3D
topological phases, e.g., DIII topological superconductor
by introducing s-wave pairing, and study the underlying
topological phase transition.
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Note added.—Recently, we noticed an in-parallel experi-
ment [58] that simulates a 3D topological insulator using
the same model and method on a 2-qubit NV center
quantum simulator. Reference [58] and our Letter both
utilized spin quantum simulators and have achieved similar
results when locating the BIS and measuring the corre-
sponding spin-texture field. The difference is that Ref. [58]
shows the symmetry protection of the 3D chiral phase, in
contrast to our Letter that proposes a way to quantitatively
measure the topological invariants. The main conclusions
of Ref. [58] and our Letter are consistent.
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