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Realization of a tunable surface Dirac gap in Sb-doped MnBi2Te4
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Signatures of both the quantum anomalous Hall effect and axion electrodynamics have been recently ob-
served to exist in thin films of MnBi2Te4, a stoichiometric antiferromagnetic topological insulator. Direct
evidence of the bulk topological magnetoelectric response in an axion insulator requires an energy gap at its
topological surface state (TSS). However, independent spectroscopic experiments revealed that such a surface
gap is much smaller than previously thought. Here we utilize angle resolved photoemission spectroscopy and
density functional theory calculations to demonstrate that a sizable TSS gap unexpectedly exists in Sb-doped
MnBi2Te4 where the bulk system remains topologically nontrivial. This gap is found to be insensitive to the bulk
antiferromagnetic-paramagnetic transition, while it enlarges along with increasing Sb concentration, enabling
simultaneous tunability of the Fermi level and the TSS gap size (up to >100 meV). Our work shows that Sb
dopants in MnBi2Te4 can not only control the Fermi level but also induce a tunable surface gap, providing a
potential platform to observe the key features of the high-temperature axion-insulator phase.
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Magnetic topological insulators (MTIs) are condensed
matter systems that possess long-range magnetic order but
remain topologically nontrivial [1–3]. Compared to nonmag-
netic TIs whose topological surface states (TSSs) manifest a
gapless Dirac cone that is protected by time reversal symmetry
(T ), the TSSs of MTIs could open an energy gap if out-of-
plane ferromagnetic (FM) order exists at the surface [4]. The
presence of this gap in MTIs is of central importance to reveal
the bulk topological magnetoelectric response in a so-called
“axion insulator”, as each of these gapped surfaces hosts an
anomalous Hall conductivity (AHC) that is quantized to a half
of e2/h [5–7]. Albeit much less explored than the quantum
anomalous Hall state [8–10], axion insulators shed light on the
fundamental understanding of topological insulators as bulk
magnetoelectrics [2,11], and are potentially practical even
in the astronomical search for the dark axions, quasiparticle
candidates of the long-sought nonbaryonic dark matter [12].

The newly discovered van der Waals magnetic compounds
(MnBi2Te4)(Bi2Te3)n (n = 0, 1, 2, ...) are thus far the only
stoichiometric material system that enables both the quan-
tum anomalous Hall and the axion insulator states [13–19],
whose Dirac surface state is first detected by angle-resolved

*These authors contributed equally to this work.
†chency@sustech.edu.cn
‡liuqh@sustech.edu.cn
§liuc@sustech.edu.cn

photoemission spectroscopy (ARPES) [20]. The ground-state
magnetic orders of the n < 2 compounds are found to be
A-type antiferromagnetic (AFM), with out-of-plane moments
coming from the central Mn planes of the septuple-layer (SL)
building blocks [16,21–27]. Along with strong band inversion,
these compounds are predicted to be three-dimensional AFM
TIs and strong candidates of axion insulators with TSS gaps at
their natural cleaving planes [4,13,28]. Intriguingly, ARPES
and scanning tunneling spectroscopy (STM) measurements
uncovered near-vanishing surface state gaps in single crystals
of the undoped “parent” compounds [29–37], raising the ques-
tion of whether the impurities, defects, and possible surface
structural and magnetic reconstruction plays a role in realizing
the macroscopic quantum phases [29]. Above all, if a surface
state gap exists in any of the Mn-Bi-Te family at all is still
controversial [29–41].

Antimony is a convenient choice of nonmagnetic atomic
dopant in the Bi-based topological materials. In Bi2(Se,Te)3,
Sb is known to effectively introduce holes to the otherwise
n doped system [42,43]. Meanwhile, it also drives the sys-
tem towards the topologically trivial side continuously, while
maintaining the Dirac cone before the topological phase tran-
sition because the T symmetry is always preserved [44]. Here,
we demonstrate via systematic ARPES measurements that the
situation in MnBi2Te4 is fundamentally different. Besides the
overall p-type doping behavior, a sizable global surface state
gap opens in Sb-doped MnBi2Te4 single crystals. A relatively
small concentration of Sb dopants was able to raise the gap
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size up to >100 meV. This gap remains immune from the
AFM ground state to the high temperature paramagnetic (PM)
state, while it increases monotonically with the density of p
dopants. Therefore, Sb dosage enables convenient control of
the surface state gap in the AFM TI MnBi2Te4 within a wide
range. Based on the modern theory of doping and alloying
implemented to density functional theory (DFT) calculations,
we identified the signature of the electronic structure during
the magnetic phase transition, and confirmed the nontrivial
topological nature of the bulk within the doping range stud-
ied. Possible origins of the anomalous surface gap are also
discussed.

Physical and topological properties of Sb-doped MnBi2Te4

{Mn1−α (Bi1−xSbx )2Te4−β , See Section S2 in Ref. [45]}is a
subject of intense recent study [65–69]. Our successful doping
of Sb into MnBi2Te4 is first confirmed by atomic energy
dispersive x-ray spectrum (EDX) mapping on a set of sam-
ples with nominal doping levels 0 � xnominal � 0.1 (Section
S2 [45]). Together with cross-sectional scanning transmission
electron microscopy (STEM) (Section S3 [45]), we found
reasonably uniform distribution of Sb dopants over a micro-
scopic region but considerable sample-to-sample variation of
doping concentration. Topographic images, obtained by scan-
ning tunneling microscopy, reveal no trace of surface atomic
reconstruction and surface lattice constant change (Section S4
[45]). Variation of carrier concentration is also found via Hall
measurements between growth batches with different nominal
doping, as well as via different samples in the same growth
batch (Section S5 [45]). We then distinguish the bulk and
surface dispersion and demonstrate the existence of the sur-
face state gap in Sb-doped MnBi2Te4 via systematic ARPES
measurements. Figure 1 shows our ARPES data taken on
a typical sample with xnominal = 0.075 at T = 10 K (below
TN ∼23 K). Figures 1(a)–1(c) present the raw and second
derivative ARPES k-E maps along the �̄-M̄ high symmetry
direction taken under three representative photon energies,
corresponding to two consecutive bulk � points and a bulk
Z point in between. Great care was taken in these measure-
ments to ensure that the �̄ points are reached very accurately
(with uncertainty less than 0.2◦ for all photon energies), so
that the sizes of the global gaps are measured precisely. A
clear, sizable energy gap is observed with an identical value
at the crossing point of the otherwise linear bands in three
different photon energies. This is in drastic contrast to the
case of undoped MnBi2Te4, where the gap is close to di-
minishing at the Dirac point (see also Section S6 [45] for
the existence of the gap in the kx-ky plane). From Fig. 1(d)
we found that the gap is a global one, which opens under
all photon energies measured, covering more than two out-
of-plane Brillouin zones (BZs). There are five visible bands
[defined in Fig. 1(b)] near the apparent gap (See Section S7
[45] for details of gap size determination). The bulk nature of
the BV band is proven via its strong and periodic kz dispersive
behavior seen in Fig. 1(d). The SV and SC bands, on the
other hand, exhibit no discernible dispersion across a kz range
of ∼5π/c, endorsing their surface origin. We can therefore
unambiguously conclude that the surface state of Sb-doped
MnBi2Te4 is gapped.

In Fig. 2 we examine quantitatively the temperature evolu-
tion of the bulk and surface bands from the ARPES data on

FIG. 1. Presence of the surface state gap in Sb-doped MnBi2Te4.
Data taken on a xnominal = 0.075 sample at T = 10 K. (a)–(c) Raw
(top) and second derivative (bottom) ARPES k-E maps on three
representative photon energies, close to the bulk high-symmetry
points (a) �3, (b) Z3, and (c) �4, respectively. BV: bulk valence band;
SV/SC: surface valence/conduction band (bottom/top part of the
gapped surface state); BC1/BC2: the two bulk conduction bands
seen at T < TN . The persistence of the surface state gap and the
evolution of BV is seen clearly. (d) Extraction of kz dispersion for the
bands at �̄. Photon energy ranges from 6.5 to 23 eV, corresponding
to ∼5.5π/c < kz < ∼ 10.6π/c. Colored lines are guides to the eye.

a prototypical Sb-doped sample [Sample S2, xnominal = 0.05,
Figs. 2(a)–2(d)], as well as the theoretical AFM and PM elec-
tronic structures of bulk Mn(Bi1−xSbx )2Te4 at xcal = 0.056
(1/18) calculated by DFT [Figs. 2(e)–2(h)]. To simulate the
electronic structure of Sb doping and the PM phase with
randomly distributed local moments, we apply DFT calcula-
tions using the Special Quasirandom Structures (SQS) method
[70] that takes into account the local disorder effects. To
directly compare with the ARPES spectral function, we un-
fold the resulting band structures obtained from the supercell
approach [52,53] to the BZ of the primitive cell. As shown
in Figs. 2(e)–2(h), while the slightly doped system for the
AFM phase does not change much, the long wavevector spec-
tral density away from EF for the PM phase looks fuzzy,
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FIG. 2. Temperature independence of the bulk and surface state gap. (a)–(d) Temperature evolution of the bands of Sample S2 (xnominal =
0.05). Data is taken with a 6.36-eV laser ARPES setup [i.e., at kz ∼ 5π/c (Z2)]. (a)–(c) Raw (left) and second derivative (right) ARPES
k-E maps taken at three representative temperatures, below and above the bulk AFM-PM transition temperature TN ∼ 23.5 K. (d) Summary
on the temperature evolution of BC1, BC2, and the surface state (SS) gap. While BC1 and BC2 merges into a single bulk conduction (BC)
band around TN , the SS gap remains essentially unchanged. (e)–(h) Effective band structure (EBS) calculation results for the AFM and PM
state electronic structure on a x = 1/18 (0.056) system. (e)/(h) Overall band structure of the AFM/PM state. Inset: AFM Brillouin zone with
high-symmetry points. Red ellipses highlight the merging of BC1 and BC2 at Z . (f)/(g) Focused band structure of the AFM/PM state along
L-Z-L.

informing the extent to which the translational symmetry is
retained. The most profound difference of the band disper-
sion between AFM and PM phases near EF occurs at the Z
point, where the BC1 and BC2 bands merge into a single BC
band at the high-temperature PM phase. We note that such
“Zeeman-like” band splitting and merging [Figs. 2(f)–2(g)]
only happens at the BZ boundary such as the Z (0, 0, 0.5)
and L(0, 0.5, 0.5) points. We attribute this phenomenon to
the band folding effect due to the doubled primitive cell of
the AFM phase with lower translational symmetry compared
to the PM phase. Such a spectroscopy signature can be used
to monitor the magnetic phase transition. Therefore, we per-
form ARPES measurements at a photon energy of 6.36 eV,
focusing on the bulk Z2 point (kz ∼ 5π/c). Indeed, we see in
Figs. 2(a)–2(d) that the BC1 and BC2 bands come closer to
each other as the temperature rises, merge into a single BC
band around TN ∼ 23.5 K, and finally keep a constant binding
energy for T > TN . Therefore, the band evolution through
the AFM-PM magnetic phase transition is unambiguously
observed.

Surprisingly, the surface gap on the other hand remains
essentially unchanged for all temperatures measured, across
TN from 16 K to 35 K [Fig. 2(d)]. In Fig. S7 [45] we graph
the temperature evolution of this gap for two other samples
with different x, reproducing again a constant-sized gap up
to 150 K. These observations reveal an unexpected fact that
the surface state gap of Sb-doped MnBi2Te4 is insensitive to

the change of temperature, regardless of its bulk magnetic
phase. Another important feature about the gap is that it in-
creases in samples (or regions) with higher p-type dopants.
This behavior is elaborated in Fig. 3 where the sizes of both
the SS and the bulk gap are compared at T > TN [71] for
seven samples with different carrier densities, corresponding
to 0 � xnominal � 0.1. Since the actual carrier concentration
varies within the same growth batch and even the same sample
(Sections S2 and S11 [45]), the doping levels are calibrated
using the binding energies at the center of the SS gap (Ec) in-
stead of xnominal. This procedure is justified by the knowledge
that Sb atoms are effective p dopants of the system, pushing
the Fermi level downward in a rigid band shifting scenario
except for the gap region. From Figs. 3(a)–3(e), we see that the
gap size increases as Ec increases, from ∼12 meV at Sample
S1 (x = 0, Ec = −272 meV) [72] to 122 meV at Sample
S5 (Ec = −156.5 meV). Local doping variation in a single
sample gives different Ec values at different spatial positions,
causing a synchronous change of the gap size (Section S11
[45]). Importantly, Fig. 3(f) and Fig. S10 show that the TSS
gap and Ec values aligned nicely to a single linear relation. It
did not matter if they were measured in different samples or
within the same crystal [73].

So far we have demonstrated the presence and the anoma-
lous temperature-doping dependence of a global energy gap
in the TSS of Sb-doped MnBi2Te4. This gap is nearly con-
stant across a wide temperature range, insensitive to the bulk
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FIG. 3. Carrier concentration dependence of the SS gap and the bulk gap. Data is taken with a 6.36-eV laser ARPES setup at T = 30-35 K
(above TN ). (a)–(e) Raw (top) and second derivative (bottom) ARPES k-E maps for five samples with different carrier concentrations ordered
by Ec. Red/blue lines: SS/bulk gap. (f) Ec dependence of the bulk gap at Z (blue, left), and the SS gap (black, right). Data taken with Samples
A7 and A10 (Section S11 [45]) is also included. (g) Bulk gap at � (black) and Z (blue) calculated via supercell approach. Possible errors
due to different Sb configuration are within symbol size. Solid lines are polynomial fits. TI: topological insulator; NI: normal insulator; TPT:
topological phase transition.

magnetic transition, but enlarges monotonically with increas-
ing p dopants. Before looking into the possible origins of
these gapped phases, we first point out that the bulk system
remains topologically nontrivial within the doping range stud-
ied. Experimentally, we notice that the size of the bulk gap
between the BV and the BC bands is increasing with doping
at the bulk Z point (Fig. 3), from 171 meV at Sample S1 to
252 meV at Sample S5 (See Section S8 [45] for details of
gap size determination), while decreasing with doping at the
bulk � point (Section S10 [45]). This proves that the bulk
system evolves toward the topologically trivial side, but has
not yet reached the topological phase transition. Theoreti-
cally, our DFT calculations using the SQS method show that
the topological phase transition (TPT) in Mn(Bi1−xSbx )2Te4

occurs at a much larger x. Figure 3(g) marks the TPT by
displaying the calculated band gap evolution at � and Z .
Both the growing gap at Z and the decreasing gap at � with
increasing x is consistent with our ARPES results. The gap at
� closes at xc � 0.75, where the system undergoes a transition
to the normal-insulator state. Similar calculation results using
the virtual crystal approximation (VCA) [64] are shown in
Section S14 [45], in which xc is found to be about 0.65. There-
fore, for 0 � x � 0.1, the system stays in the topological
regime.

We note that the TSS of the x = 0 parent compound has a
near-vanishing gap that is much smaller than DFT prediction
(Figs. 2, 3 and Refs. [29–32]). Although a comprehensive
explanation on the intact Dirac cone of MnBi2Te4 is not
reached, these results point to the possibility that the structural
and/or magnetic structure on the surface of the system is
fundamentally different from that in the bulk [29]. Thus, it
is natural to speculate that Sb doping in MnBi2Te4 suppresses
the surface spin reorientation and somehow restore the surface

FM, which is supported by the ferrimagnetic state recently
found by transport measurements in Sb-doped samples [74].
However, this argument is not consistent with our ARPES
results in the PM phase, because a magnetic gap arising from
this mechanism is supposed to vanish at T > TN . Similarly,
previous work proposed that the Dirac electronic states could
couple to the conduction electrons through the Ruderman-
Kittel-Kasuya-Yosida (RKKY) exchange interaction among
the PM impurities, and thus induce weak ferromagnetism
[75]. However, it is uncertain that such a FM state above TN

could quantitavely cause a ∼100 meV gap as found, which
inevitably leads to a significantly higher transition tempera-
ture at the surface. The residual FM at the surface is supposed
to be captured by monitoring the sz components of the TSS
from the spin-ARPES measurements [56]. We performed such
measurements on an undoped sample and found large, antipar-
allel z polarization of the spin at �̄. As shown in Fig. S11
[45], the sz components are observed to be as large as 30%, in
drastic contrast to the case of nonmagnetic TIs where sz = 0
at �̄. However, due to the limitation of the energy resolution
of spin-ARPES, one cannot rule out the bulk contribution
although the penetration effect predominately counts the top-
most Sb-MnBi2Te4 layer at the surface [58]. Another possible
scenario is that this gap does not result from the surface FM,
but rather the effect of dephasing and Coulomb scattering
from charged impurities, such as vacancies (Section S15 [45])
[62]. We note that such speculation simultaneously fulfills the
two anomalous features of the TSS gap, i.e., remaining above
TN and increasing upon doping, but it does not perfectly fit
the observed shape of the gapped bands. Other mechanisms,
such as the effect of hybridization with alien d electrons
from transition-metal elements [76] and lattice-distortion in-
duced symmetry breaking [77], seem unlikely to happen here.
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More evidence that exposes the underlying mechanism of the
anomalous gap is thus called for.

In summary, a sizable global energy gap in the topo-
logical surface state of a magnetic topological insulator,
Sb-doped MnBi2Te4, is discovered experimentally. Our sys-
tematic ARPES measurements found that this gap increases
in size from near vanishing to more than 100 meV at low dop-
ing levels, but remains constant in both the low-temperature
AFM and the high-temperature PM phases. The transition
between the two phases is identified by the merging of two
bulk conduction bands at TN , observed both in our ARPES
measurements and DFT calculations. Restoration of surface
FM, weak ferromagnetism introduced by RKKY interaction,
as well as the combined effect of charged impurity and quasi-
particle dephasing are discussed as possible origins of the
TSS gap. Remarkably, these possibilities do not hinder the
topological nontriviality of the system. It is nonetheless a
large, robust surface state gap with inverted band order in
the bulk. Our results show unambiguously that the gap at
the topological surface state of MnBi2Te4 can be tuned in
a systematic way via Sb substitution. Taken collectively, we
suggest that Sb-doped MnBi2Te4, comprising a single massive
Dirac cone caused either by the broken T symmetry or the
charged impurities, might be thus far the simplest material
system to observe the signatures of the high-temperature ax-
ion insulator state.
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