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Spectral signatures of the surface anomalous Hall
effect in magnetic axion insulators
Mingqiang Gu 1,6, Jiayu Li 1,6, Hongyi Sun1, Yufei Zhao 1, Chang Liu1, Jianpeng Liu 2,3✉, Haizhou Lu1 &

Qihang Liu1,4,5✉

The topological surface states of magnetic topological systems, such as Weyl semimetals and

axion insulators, are associated with unconventional transport properties such as nonzero or

half-quantized surface anomalous Hall effect. Here we study the surface anomalous Hall

effect and its spectral signatures in different magnetic topological phases using both model

Hamiltonian and first-principles calculations. We demonstrate that by tailoring the magne-

tization and interlayer electron hopping, a rich three-dimensional topological phase diagram

can be established, including three types of topologically distinct insulating phases bridged by

Weyl semimetals, and can be directly mapped to realistic materials such as MnBi2Te4/

(Bi2Te3)n systems. Among them, we find that the surface anomalous Hall conductivity in the

axion-insulator phase is a well-localized quantity either saturated at or oscillating around e2/

2h, depending on the magnetic homogeneity. We also discuss the resultant chiral hinge

modes embedded inside the side surface bands as the potential experimental signatures for

transport measurements. Our study is a significant step forward towards the direct realiza-

tion of the long-sought axion insulators in realistic material systems.
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Magnetic topological systems have drawn significant
attention recently due to their unconventional bulk
transport properties and surface states1. The topological

properties of these magnetic topological phases are typically
described by nontrivial bulk topological indices2. On the other
hand, the topological nature of the surface states also implies that
there would be nontrivial surface transport behavior in these
magnetic topological systems, which is closely related to their
exotic bulk response properties. Typical examples are three-
dimensional (3D) insulators with non-vanishing Chern–Simons
orbital magnetoelectric coupling exhibiting effective axion elec-
trodynamics, which are characterized by fractionalized surface
anomalous Hall effect3–6. If either time-reversal (T) or inversion
symmetry (I) is present, the coupling phase angle θ must be
quantized as 0 or π (modulo 2π), the latter of which (θ= π) with
an energy gap at the surface is also known as “axion insulators”
defined in 3D systems3,4,7. Thus, the axion insulator exhibits a
quantized bulk magnetoelectric coupling coefficient, which is
equivalent to a half-quantized surface anomalous Hall con-
ductivity (AHC) e2/2h3,4.

3D T-preserved topological insulators (TIs) possess the θ= π
condition. However, the resulting half-quantized surface AHC is
totally compensated by the gapless surface Dirac cones of TIs8.
Therefore, the T-preserved axion insulator phase was typically
realized by introducing extrinsic magnetic dopants to the top and
bottom surfaces of a 3D TI to gap the surface states9–12, while
keeping the bulk still nonmagnetic. On the other hand, bulk
magnetic TIs with inversion symmetry are categorized as I-pre-
served axion insulators13. Examples include the recently dis-
covered superlattice-like stoichiometric compounds MnBi2Te4/
(Bi2Te3)n in either ferromagnetic (FM) or antiferromagnetic
(AFM) phases14–21. Besides, this Van der Waals (VdW) layered
material family also provides an ideal platform for realizing
fruitful topological phases, such as Chern insulator, quantum spin
Hall (QSH) insulator, and high-order TI22–29.

Compared with the quantum anomalous Hall state where the
topological nature is well established by the chiral edge states
carrying a nonzero Chern number, the direct evidences of an
axion insulator, such as the topological magnetoelectric effect or
the resultant surface AHC, are much more challenging to
measure30,31. Conventional quantum transport measurements
inevitably count the top and bottom surface together, giving rise
to a (½ + ½) or (½ − ½) quantized AHC, depending on the
relative magnetic orientation of the two surfaces. To avoid
indistinguishable signature with quantum anomalous Hall effect,
a T-preserved axion insulator typically requires different mag-
netic doping to the top and bottom surfaces. In a magnetic
hysteresis loop, this slab setup would give rise to two quantum
anomalous Hall states with opposite Chern numbers connected
by an intermediate insulating phase with zero Hall plateau32. In
even-layer MnBi2Te4 slabs, zero Hall plateau is observed as an
indirect evidence of the I-preserved axion insulator phase23.
However, such zero Hall plateau can also be presented by a trivial
case where both surface gaps are dominated by finite-size effect
and thus do not contribute any surface anomalous Hall con-
ductivity at all33–35. Therefore, despite being a fascinating theo-
retical concept, some key issues about the surface AHC of axion
insulators, such as the locality and the device design, still remain
elusive. More importantly, a clear prediction of the unique sig-
nature of axion insulators that can be experimentally detected is
still lacking.

In this work, by tuning the interlayer coupling and magneti-
zation of a generic model Hamiltonian, we construct a topological
phase diagram with direct mappings to 3D MnBi2Te4/(Bi2Te3)n
compounds, including axion insulators, Weyl semimetals, 3D
Chern insulators, and 3D QSH insulators. Their distinctive

surface AHC features are comprehensively studied. In addition to
the model study, we then construct atomistic Hamiltonians from
density-functional theory (DFT) with close reliance on realistic
attributes of materials, yielding a direct comparison with the
angle-resolved photoemission spectroscopy (ARPES) measure-
ments for the band dispersions. By projecting the Chern number
of a thick slab onto each VdW layer, we find that such real-space,
local Chern marker in the axion insulator phase is well localized
at the surface and results in a surface AHC either saturated at or
oscillating around e2/2h, depending on the magnetic homo-
geneity. In comparison, the 3D Chern insulator phase, as well as
the Weyl semimetal phase, does not manifest a well-defined
surface AHC. Remarkably, we propose that the surface anom-
alous Hall effect in the axion insulator phase of MnBi2Te4/
(Bi2Te3)n leads to an unusual chiral hinge mode embedded in the
side surface Bloch states, which clearly distinguishes from that in
a trivial insulator. Such a clear signature is supposed to be
detectable by appropriate surface transport measurements.

Multiple topological phases from model Hamiltonian
calculations
To begin with, we tune the hopping parameter between the VdW
layers in MnBi2Te4/(Bi2Te3)n to realize different 3D topological
phases, and illustrate that a well-localized, half-quantized surface
AHC is the signature of the axion insulator phase. Recall that a
MnBi2Te4 monolayer can be effectively described by a Bi2Te3
monolayer under a FM exchange field27, we consider a 3D-
layered structure composed by vertically stacking 2D TIs, i.e.,
bilayer Bi2Te3, with variable separation between bilayers (d) and
magnetization (M). Thanks to the successful synthesis of single-
crystal Mn–Bi–Te family and molecular beam epitaxy technique,
such multilayer heterostructure could be realized by intercalating
an atomic or VdW buffer layer, e.g., BN or In2Se3, into MnBi2Te4/
(Bi2Te3)n. The model Hamiltonian is written as

H ¼ _vf τz σ ´ kð Þz þmkτx þMσz

þ t0IB υþτ� þ υ�τþ
� �þ tIB υþτþe

ikzD þ υ�τ�e
�ikzD

� �
;

ð1Þ

where k ¼ �kx; ky; kz� ¼ �kk; kz� is the momentum, σ, τ and υ
are Pauli matrices acting on spin, surface, and layer, respectively,
with s± ¼ �sx ± isy�=2 (s ¼ τ; υ; here “surface” refers to the two
surface states of each TI monolayer, which are coupled together
by the hybridization term mkτx). The first two terms describe a
monolayer Bi2Te3 with Fermi velocity vf and Dirac mass
mk ¼

�
Δ� Bk2k

�
36,37, while the third term denotes the FM

exchange coupling between the magnetization M and electrons’
spin. The last two terms describe the intra-bilayer and inter-
bilayer tunneling, respectively, with t0IB the intra-bilayer hopping
integral and D the superlattice period. For the inter-bilayer
hopping, we introduce an exponentially decaying scaling, i.e.,
tIB ¼ t0IB � e�α d�d0ð Þ=d0 ; where d0 and d are the intra- and inter-
bilayer spacing. The inversion symmetry I ¼ τxυx is preserved in
this Hamiltonian. The model parameters and the analytical
solutions of Eq. (1) are provided in Supplementary Note 1.

As shown in Fig. 1, the origin of the phase diagram represents a
3D Bi2Te3 TI phase. Varying the inter-bilayer coupling with
preserved T leads to a Z2 classification, denoted by the horizontal
axis. When the inter-bilayer coupling is weakened, the phase
transition between strong TI (Z2 = 1) and weak TI (Z2 = 0)
occurs. With increasing magnetization, the two TI phases evolve
to axion insulator and 3D QSH insulator, respectively, the latter
of which can be considered as a trivial stacking of T-broken QSH
insulator38. When the exchange field is strong enough, a 3D
Chern insulator phase with chiral side surface states emerges,
which is adiabatically connected to a vertical stacking of 2D
Chern insulators39–41. Under a finite exchange field, the
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transition between these three topologically distinct insulating
phases inevitably passes an intermediate region, i.e., the Weyl
semimetal phase42.

Depending on the magnetization per VdW layer, the different
pristine FM MnBi2Te4/(Bi2Te3)n compounds can be mapped onto
the vertical axis of the phase diagram with d = d0, as marked by
the red stars in Fig. 1. The mapping follows two assumptions: (i)
the exchange field in different MnBi2Te4/(Bi2Te3)n materials is
homogeneous; such assumption works well previously for the
mapping of MnBi2Te4/(Bi2Te3)n slabs to the 2D topological phase
diagram27. (ii) The band inversion only occurs at Γ ¼ 0; 0; 0ð Þand
Z ¼ 0; 0; π=D

� �
, which means that the band orders at the other

inversion-invariant momenta remain the same as that of the
nonmagnetic 2D limit (M ¼ 0;D ! 1), i.e., bilayer Bi2Te3.
Since the Hamiltonian in Eq. (1) has I, one can compute the
symmetry indicator of I, a Z4 invariant, to determine their
topological nature43–45:

Z4 ¼ ∑
8

k¼1

nþk � n�k
2

mod 4 ¼ ∑
k¼Γ;Z

n�k mod 4; ð2Þ

where nþk /n
�
k is the number of occupied states with even/odd

parity at one of the eight inversion-invariant momenta k. By
adding a small magnetization, each doubly degenerate band of the
weak TI and strong TI phases splits into two bands with the same
parity, leading to Z4 = 0 and Z4 = 2, respectively. The former,
i.e., 3D QSH insulator, is equivalent to the vertical stacking of 2D
T-broken QSH insulators with the parities shown in Fig. 1. Such a
phase cannot be described by symmetric Wannier functions,
while the Wannier obstruction can be removed upon adding a set
of trivial elementary band representations (see Supplementary
Note 2 for details). Therefore, it corresponds to a distinct type of
“fragile topology”, manifesting a novel twisted bulk-boundary
correspondence46,47. The latter corresponds to an axion-insulator
phase, as predicted by previous studies using a single Z4
invariant18,19,28. Nevertheless, we find that the 3D Chern insu-
lator phase also yields Z4 = 2 but a different parity distribution
compared with the axion insulator. Therefore, the full indicator
group of inversion symmetry Z4 ´Z2 ´Z2 ´Z2 is required to
further distinguish these two phases48, where the Z2 indicators

can be chosen as the parity of the Chern number in the ki = π
(i = x, y, z) plane. As shown in Fig. 1, the full symmetry indicator
of the axion insulator phase and the 3D Chern insulator phase are
2:(000) and 2:(111), respectively.

In the phase diagram derived from Eq. (1), T symmetry is
always broken, except for the horizontal line withM = 0. We find
that that the three magnetic insulating phases are isolated from
each other by an intermediate Weyl-semimetal phase, which is
also consistent with the parity analysis. Our symmetry analysis
based on DFT calculations shows that all the pristine FM
MnBi2Te4/(Bi2Te3)n (n = 0–3) compounds are I-preserved axion
insulators. For comparison, we also calculate Mn2Bi2Te5 where
the magnetic moments per VdW layer are twice as that in
MnBi2Te4, and obtain an unambiguous Weyl semimetal phase, as
marked in Fig. 1.

DFT-calculated surface AHC of magnetic topological phases
in MnBi2Te4/(Bi2Te3)n
Having established the phase diagram, we next calculate the
profile of the local Chern marker49 of the topological phases with
nontrivial Z4 numbers. In principle, one can define a local AHC
σAHC ¼ Cz � e2=h, with Cz being the real-space projected Chern
number in the z-direction. Using the Wannier-representation
tight-binding Hamiltonians obtained by DFT-calculated Bloch
eigenstates, we compute the local Chern marker Cz lð Þ projected
onto each VdW layer50,51, expressed as

Cz lð Þ ¼
�4π
A

Im
1
Nk

∑
k
∑
vv0c

XvckY
y
v0ckρvv0k lð Þ; ð3Þ

where X and Y are the position operators along the x and y
directions, respectively. ρvv0 ðlÞ is the projection matrix on to the
corresponding layer l, which implies a summation over all atoms
within a VdW layer (see Methods).

The results for the pristine FM MnBi2Te4 slabs are shown in
Fig. 2a. We find that the integrated layer-projected Chern marker
C lð Þ ¼ ∑lCz lð Þ is stabilized at 1/2 for l > 2, and rises up to 1 when
it passes over the last two layers, giving rise to a Chern insulator
as a whole with C ¼ 1. In this sense, the penetration depth of the
surface AHC is about two SLs, while the internal layers do not
contribute to the AHC due to the homogeneous spin alignment.

Fig. 1 Topological phase diagram. Phase diagram of the multilayer topological heterostructure in terms of relative spacing d� d0
� �

=d0 and magnetization
M (rescaled as the number of Mn layers per VdW layer) derived from Eq. (1). Insets show the sketch of the heterostructure and Z4 indices with parities.
Four pristine topological materials in FM phase Bi2Te3 (M ¼ 0), MnBi4Te7 (M ¼ 1=2), MnBi2Te4 (M ¼ 1), and Mn2Bi2Te5 (M ¼ 2) are mapped at the
vertical axis.
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Such behavior is similar to the prediction of the axion insulator
phase in a nonmagnetic bulk TI with a gapped surface7. In
addition, the slabs with more than 4 SLs are thick enough to
reveal the half-quantized AHC localized at both surfaces, indi-
cating an I-preserved, FM axion insulator phase.

The FM MnBi2Te4 turns into a 3D Chern insulator when
d ≥ 1:7d0, for which the Chern number of a 2D slice within the
kx–ky plane at an arbitrary kz equals to 1 (Supplementary Note 3).
Despite sharing the same Z4 invariant with the axion insulator,
the integrated local Chern numberC lð Þ of the 3D Chern insulator
behaves quite differently. As shown in Fig. 2b, each bilayer
contributes to an exact quantized Chern number 1, giving rise to
a C lð Þ proportional to l. Therefore, there is no well-defined sur-
face AHC, instead, the total AHC of the slab is proportional to
the total number of primitive cells in the slab.

We note in Fig. 1 that bulk FM MnBi2Te4 falls in the vicinity of
the boundary between axion insulator and Weyl semimetal42,
which is thus sensitive to numerical details such as the choice of
exchange-correlation functionals and lattice constants24,26. Fig-
ure 2c shows the corresponding C lð Þ for the Weyl semimetal
phase obtained by applying a 1% lattice expansion. It is found
that for the insulating slabs (Supplementary Note 3), the surface
AHC is no longer quantized to 1/2 due to the bulk contribution.
Especially for the slabs thicker than five VdW layers, the surface
AHC contribution from the top and bottom two layers ranges

from 0.42 to 0.35, while the internal-layer contribution increases
linearly with the number of layers due to the bulk AHC52. For all
these slabs, the distribution of the surface AHC is not localized at
one surface, but extends to the center of the slab.

Half-quantized surface AHC in the axion insulator phases
We now focus on the axion insulator phase and its surface AHC
in FM and AFM MnBi2Te4/(Bi2Te3)n compounds. The magnetic
ground states for MnBi2Te4, MnBi4Te7, and MnBi6Te10 (n = 0–2)
are A-type AFM along the z-axis with the local moments of Mn
FM ordered within each MnBi2Te4 layer17,53, while MnBi8Te13 (n
= 3) is a ferromagnet18,21. From the perspective of Z4 indices, all
of the above-mentioned compounds, no matter FM or AFM
states, are I-preserved axion insulators according to our DFT
calculations. For slab calculations, the total Chern number
depends on whether I is preserved in the slab geometry. There-
fore, for FM and odd-layer AFM MnBi2Te4 slabs with I, the total
Chern number reaches to 1 because both top and bottom surfaces
contribute the same AHC e2/2h. On the other hand, as shown in
Fig. 2d, the topmost layer of the even-layer AFM phase (with
broken I) contributes almost half-quantized AHC, i.e.,
Cz 1ð Þ ¼ 0:49, while the bottom layer contributes an opposite
AHC Cz 16ð Þ ¼ �0:49, leading to a zero Hall plateau state and a
zero total Chern number. Starting from the second layer, C lð Þ no
longer saturates but oscillates around 1/2 with a period of the unit

Fig. 2 Local Chern marker of various topological phases. a–c Integrated local Chern marker C lð Þ for MnBi2Te4 slabs in a axion insulator, b 3D Chern
insulator, and c Weyl semimetal phases. In panel a–c, the color lines terminate at different positions, denoting the total thickness of the calculated slabs up
to 16 VdW layers. d, e Integrated local Chern marker C lð Þ as a function of layer index l for a 16-layer slab of d MnBi2Te4 and e MnBi4Te7.
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cell in the z-direction, i.e., two VdW layers. Every additional layer
contributes reversely to σAHC due to the flipping spin direction,
leading to the oscillation with the amplitude as large as 0.21e2/h.
Such behavior is in sharp contrast to T-preserved axion insulators
proposed before. For the case of FM and AFM MnBi4Te7, the
layer-projected AHC at MnBi2Te4 termination reaches the half-
quantized value after three or four VdW layers, then oscillates
around e2/2h, again, due to the inhomogeneity of the magnetic
moments. The oscillation period is also determined by the
thickness of a unit cell, i.e., 2 (4) VdW layers for FM (AFM)
phase. The details are provided in Supplementary Note 4.

It is worthwhile to note that the half-quantized AHC of an
axion insulator is a local property at the gapped surface54. To
demonstrate this, we consider a thick slab of FM MnBi4Te7,
which is insulating for the MnBi2Te4 termination but metallic for
the Bi2Te3 termination. We find that as long as the Fermi level
(Ef) locates within the surface gap of the MnBi2Te4 termination,
the corresponding surface AHC would stay around e2/2h. On the
other hand, the surface AHC with the metallic Bi2Te3 termination
varies with different choices of Ef (see Supplementary Note 4).
Overall, the locality of the surface AHC does not rely on the
metallicity of the whole slab, but is due to the vanishing con-
tribution of the local Chern marker from the bulk state, i.e.,
∑lþu:c:

l2internalC lð Þ ¼ 0. This can also be used as a criterion to distin-
guish the “surface” and “bulk” layers.

Spectral signatures of the surface AHC—hinge states
It is of great importance to consider how the computed local
Chern marker and surface AHC corresponds to a measurable
physical quantity2, thus providing direct evidence for the axion-
insulator phase. To be specific, one might wonder what kind of
“mode” carries the half-quantized AHC in a realistic material.
Unlike the 2D system with the well-defined 1D edge, 2D surfaces
of a 3D material are terminated by hinges between different
surfaces. While the top and bottom surfaces of MnBi2Te4/
(Bi2Te3)n are both gapped by the out-of-plane magnetization, the
side surfaces are either gapless or gapped depending on the AFM
or FM configuration, respectively. Combining DFT calculations
and recursive Green’s function approaches (see Methods), we
calculate the real-space local density of states (LDOS) of the

surface and hinge states of a semi-infinite sample, as shown in
Fig. 3. Fortunately, the hinge states of both AFM and FM axion-
insulator phases provide effective signatures that could be
detected by experiments. We next discuss the two cases
separately.

For the side surface of AFM MnBi2Te4, a gapless Dirac cone
occurs due to the combined symmetry Tτ1=2, where τ1=2 denotes
the half-cell translation along the stacking axis55. Similar to the
nonmagnetic TI, the manifestation of the bulk magnetoelectric
response at the side surface is compensated by the opposite
contribution from the surface Dirac cone, leading to vanishing
side-surface AHC. Instead, there exists helical modes with the
opposite spin channels propagating through opposite directions.
The terminated AFM MnBi2Te4 sample and the calculated LDOS
of the top hinge and side surface states are shown in Fig. 3a–c
(position ② and ③). Compared with the helical gapless side sur-
face states, we find that a remarkable feature of the hinge state is
the asymmetric spectral weight between the left-and right-moving
modes, indicating its chiral nature. We denote such chiral hinge
modes embedded inside the side surface bands as “in-band hinge”
states, and attribute them to the difference of the surface AHCs of
the top and the side surfaces31 (see Supplementary Note 6 for
details). For even-layer AFM slabs where the top and bottom
surfaces have opposite magnetizations, the top and bottom in-
band hinge states manifest opposite chiralities accordingly.

For FM MnBi2Te4, the side surface is gapped by the z-direction
magnetization and a lower crystal symmetry, stemming from a
high k-order effect of spin-momentum locking. In such a situa-
tion, the in-band hinge states still exist, with the top and bottom
hinges having the same chirality, as shown in Figs. 3e and 3f. In
addition, such a side surface exhibits a half-quantized local Chern
marker, leading to a single chiral mode (½ + ½) at the top hinge
and no chiral modes (½ − ½) at the bottom hinge, inside the side
surface gap (position ② and ④, see Fig. 3f). Such a chiral hinge
mode with integer AHC denoted as in-gap hinge mode, is
equivalent to the chiral domain wall state in high-order topolo-
gical insulators56,57, which is also predicted in FM MnBi2Te4/
(Bi2Te3)n by model calculations28. However, we note that such in-
gap hinge mode only exists within a small energy range, i.e., 6
meV for FM MnBi2Te4 because its side surface gap is a high-
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order magnetization gap. On the other hand, the in-band hinge
modes for both of the top and bottom hinge, originated from the
half-quantized surface AHC, remain robust within a much larger
energy range, i.e., the top/bottom surface gap (52 meV), which is
favorable for experimental detection.

Besides the non-integer and integer topological charge, another
feature to compare the in-band hinge states and the in-gap hinge
states is their decay length in the real space, which clearly reflects
their distinct topological origins. Figure 4 shows the LDOS of the
hinge states projected onto different positions of the top surface
(along the x-direction, Fig. 4a–e) and the side surface (along the
z-direction, Fig. 4f–j), respectively. We find that the in-gap hinge
state decays rapidly along the horizontal (x) direction at the top
surface, while it decays much more slowly along the vertical (z)
direction at the side surface. Specifically, five-unit-cell along the
x-direction at the top surface is long enough for the in-gap hinge
states to drop to below 1/10 of the maximal spectral intensity at
the hinge, while at the side surface, the in-gap hinge states only
decay to 1/7 of the maximal spectral weight within a thickness of
30 VdW layers along the z-direction. This seems counterintuitive
due to the weak VdW interaction between layers along the z-
direction. However, it can be understood by taking into account
the surface bandgap: the side surface gap is much smaller than the
top surface gap due to the magnetization direction, leading to a
much longer wavefunction decay length58. On the other hand, the
in-band hinge states reverse their chiralities on different sides of
the top surface (see Figs. 4b, 4d and 4e), and decay rapidly
through both of the top and the side surfaces (blue curves in

Figs. 4e and 4j), which agrees well with the locality of the surface
AHC shown in Fig. 2d. Such consistency again demonstrates that
the in-band hinge state is an ideal physical quantity to verify the
existence of the surface AHC of the axion insulator phase. Note
that the in-band hinge profile in Fig. 4j also distinguishes that of a
FM trivial insulator and a Chern insulator on top of a trivial
insulator.

The in-band hinge states will contribute to unique transport
signatures when Ef crosses the side surface bands. As shown in
Fig. 3d, compared with nonchiral top and side surface states,
these localized chiral in-band hinge states exhibit imbalanced
spectral weight for the left-moving and right-moving modes. We
note that even for FM axion insulators, one can probe a specific
hinge with only in-band hinge contribution (position ④ in
Fig. 3f). We thus propose a device setup with a thick-enough
sample and multiterminal leads attached to one surface covering
only a few VdW layers. While the signal of in-band hinge modes
is buried by the metallic side surface states for typical two-
terminal transport measurements, one can expect nonzero signal
through nonlocal surface transport measurements59. Although
the exact number of e2/2h conductance is not topologically pro-
tected and not immune from subtle device structure and disorder
effects, the chiral in-band hinge states still give rise to unam-
biguous transport signature as the direct evidence of axion
insulators, which is in sharp contrast to the case of a trivial
insulator60. We also provide a spectral comparison between a FM
axion insulator and a FM trivial insulator in Supplementary
Note 7.
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Discussion
A gapped surface state is the kernel to realize the axion insu-
lators. While recent ARPES measurements unexpectedly show
an almost gapless surface Dirac cone in MnBi2Te460–62, we
briefly provide two promising candidates with surface gaps in
MnBi2Te4/(Bi2Te3)n family in Supplementary Fig. 8. By com-
parison of our ARPES and DFT results, we can distinguish two
different types of surface gaps depending on the specific ter-
minations. Type I originates from the typical surface magne-
tization that introduces a Mzσz term to a gapless Dirac
fermion, exemplified by the (001) surface of MnBi2Te4, and the
MnBi2Te4 termination of MnBi2Te4/(Bi2Te3)n. Although the
surface states of MnBi2Te4 are reported to be gapless due to
the possible reconstruction of the geometric or magnetic
configurations at the surface60–62, there are still unambiguous
surface gaps observed in various conditions, including Sb-
doped MnBi2Te4 and the MnBi2Te4 termination of
MnBi8Te1321,63,64. Type II, on the other hand, is caused by the
hybridization effect between the Dirac cone and the bulk
valence band, exemplified by the Bi2Te3 termination of
MnBi4Te765. Compared with the magnetization gap, the
hybridization gap exchanges the orbital characters of the sur-
face band and bulk band. Nevertheless, the broken T also gives
rise to an imbalanced Berry curvature with opposite momenta
and thus a half-quantized AHC, which is also provided in
Supplementary Note 8.

To summarize, we demonstrate that the half-quantized surface
AHC in MnBi2Te4/(Bi2Te3)n series is well localized at a few layers
from the top/bottom surfaces, which could be an experimental
observable. The surface AHC is represented by the chiral hinge
mode embedded inside the side surface bands, providing guide-
lines for nonlocal transport measurements. Our finding estab-
lishes an ideal platform to realize the long-sought axion states and
the related topological magnetoelectric phenomena. Besides, the
fruitful topological phase diagram, including 3D Chern insula-
tors, Weyl semimetals, and fragile 3D QSH insulators, attributes
new possibility to this family in the search of novel quantum
materials.

Methods
DFT calculations. DFT calculations are performed using Vienna Ab-initio
Simulation Package (VASP) 66 to provide insights on electronic structures in the
MnBi2Te4/(Bi2Te3)n system. The generalized gradient approximation developed
by Perdew, Burke, and Ernzerhof (PBE)67 is used to describe the exchange-
correlation energy in our calculation. The projector augmented wave (PAW)
method is used to treat the core and valence electrons using the following
electronic configurations: 3p64s23d7 for Mn, 5d106s26p3 for Bi, and 5s25p4 for
Te. The electron correlation effects of Mn-3d states are considered by the
inclusion of the Hubbard U (PBE+U), with U(Mn)= 5 eV. The Brillouin zone is
sampled by an 8 × 8 × 1 Γ-centered Monkhorst–Pack k-point mesh. Once the
electronic structure is converged, the Bloch states are projected to the Wannier
functions68,69 of the Mn-3d, Bi-6p, and Te-5p orbitals to build the tight-binding
Hamiltonian.

The calculation of local Chern number for a particular VdW layer (l) is
systematically derived by Varnava et al. in ref. 51, and expressed as Eq. (3) in the

main text, where A is the unit cell area, XðYÞijk ¼
ψikh ji_vx yð Þ ψjk

�� �
Eik�Ejk

is the matrix

element for the position operator along the x or y directions, and the band indices
go through the conduction ðcÞ and valence ðvÞ bands as denoted for the summation.
Nk is the number of k-points and ρðlÞ the projection matrix onto the orbitals of the
atoms within the corresponding VdW layer.

Calculation of the hinge states. We have employed two DFT-based methods to
compute the hinge states, as plotted in Fig. 3 and Fig. 4. Both methods show
consistent chiral states at the hinge of the MnBi2Te4 system. In Fig. 3, the hinge
states are calculated using a bi-semi-infinite open-boundary geometry condition,
which is also used in ref. 70. The structure is semi-infinite along the x- and z-
directions, while the periodic boundary condition (PBC) is maintained along the
y-direction so that ky remains a good quantum number. The Hamiltonian can be

written in terms of a quasi-block-tridiagonal form as follows:
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where H0;H
x
1 and Hz

1 are the ground-state Hamiltonian and hopping matrices along
the x- or z-directions, respectively. Such a tight-binding Hamiltonian is obtained from
the maximally localized Wannier functions constructed by the wannier90 package
interfaced to the VASP code. Then the Hamiltonian can be written into

H ¼ H0 HI

Hy
I HR

 !
: ð5Þ

One can immediately define a Green’s function for such Hamiltonian following
the traditional scheme, i.e.,

G ¼ G0 GI

Gy
I GR

 !
: ð6Þ

Note that GR includes the surface Green’s function along both the x- and z-
directions, which can be computed iteratively.

In Fig. 4, the evolution of the hinge states is investigated as a function of
distance away from the hinge. Then a supercell with finite width along the x- (for
the top surface) or the z-direction (for the side surface) is needed. The system
geometries are a) For the top surface, finite along x (20-unit-cell-thick), semi-
infinite along z, PBC along y; b) For the side surface, finite along z (30-unit-cell-
thick), semi-infinite along x, PBC along y. Surface states are computed iteratively as
the retarded Green’s function along the semi-infinite direction. More details can be
found in Supplementary Note 5.

Data availability
The supportive data for the findings in this study are available from the corresponding
authors upon reasonable request.

Code availability
The computation code for getting the theoretical prediction is available from the
corresponding authors upon reasonable request.
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