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Symmetry formulated by group theory plays an essential role with respect to the laws of nature, from
fundamental particles to condensed-matter systems. Here, by combining symmetry analysis and model
calculations, we elucidate that the crystallographic symmetry groups of a vast number of magnetic
materials with light elements, in which the neglect of relativistic spin-orbit coupling (SOC) is an
appropriate approximation, are considerably larger than the conventional magnetic groups. Thus, a
symmetry description that involves partially decoupled spin and spatial rotations, dubbed spin group, is
required. We derive the classifications of spin point groups describing coplanar and collinear magnetic
structures, and the irreducible corepresentations of spin space groups illustrating more energy degeneracies
that are disallowed by magnetic groups. One consequence of the spin group is the new antiunitary
symmetries that protect SOC-free Z2 topological phases with unprecedented surface-node structures. Our
work not only manifests the physical reality of materials with weak SOC, but also sheds light on the
understanding of all solids with and without SOC by a unified group theory.
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I. INTRODUCTION

The study of symmetry has always been the kernel of
condensed-matter physics and materials chemistry, as it
dictates the way in which wave functions of elementary
excitations behave, including geometric phases, selection
rules, and degeneracies. The corresponding wave-function
properties thus reflect the physical observables such as
polarization, response susceptibility, and band dispersions.
The symmetries of three-dimensional (3D) solids are
believed to be described by a complete crystallographic
group theory, including 32 point groups (PGs), 230 space
groups (SGs), 122 magnetic PGs (MPGs), 1651 magnetic

SGs (MSGs), and their double groups with spinor repre-
sentations [1,2]. They apply to the nonmagnetic materials
without and with spin-orbit coupling (SG and double SG)
as well as the magnetic materials with spin-orbit coupling
(double MSG). The recent prosperity of the symmetry-
protected topological phase in condensed-matter systems
is based on electronic structures, providing a fertile play-
ground for a survey of various quasiparticles including
Weyl, Dirac fermions, and others beyond them [3–15].
Moreover, the theories of the symmetry-based indicator and
(magnetic) topological chemistry based on band represen-
tations allow a comprehensive classification of topological
crystalline insulators and semimetals, leading to a dic-
tionary of thousands of predicted topological materials
[16–31]. Notably, topological phases without spin-orbit
coupling (SOC) are also widely investigated in nonmag-
netic materials as a starting point of the Hamiltonian with
relativistic SOC [13,32–34]. However, the symmetry
description of the remaining quadrant, i.e., the magnetic
materials with negligible SOC, which represents a vast
number of compounds with light elements, is much less
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explored (see Fig. 1). The most striking characteristic of the
materials in this quadrant is the nontrivial spin degrees of
freedom yet decoupled with the orbital part. Thus, the
corresponding symmetry is not fully described by any of
the abovementioned SGs. Specifically, the symmetry oper-
ations of spin, e.g., spin rotations and the symmetry
operations of lattice, can combine in the way disallowed
by SOC, which form a composite symmetry group applied
on both position space and spin space but not necessarily
simultaneously. Such groups, dubbed spin group including
spin point group (SPG) and spin space group (SSG), were
first considered in the 1960–1970s to account for the extra
symmetries of the Heisenberg Hamiltonian with applica-
tion on spin waves [35,36]. Later, spin group was defined in
a mathematically rigorous way, where all 598 nontrivial
spin point groups (in which pure spin operations are
excluded) were classified using an analogous method
of classifying 90 type-I and type-III crystallographic
MPGs [37,38]. Apart from the original works, there are
scattered works discussing the applications of spin-group
symmetry in the Landau theory of phase transition [39,40],

neutron scattering [41], electronic states with spiral mag-
netic order [42], etc.
As a complete characterization of symmetry in magnetic

materials when SOC is negligible, the theory of spin group
is expected to be powerful also in the application of
electronic ground-state properties such as spin or orbit
polarization, Berry curvature, and linear responses such as
anomalous or spin Hall conductance, (inverse) spin gal-
vanic effect, (inverse) Faraday effect, etc. Surprisingly, such
topics were seldomly explored until the recent growing
interest of antiferromagnetic (AFM) spintronics [43,44]. It
is found that certain effects in AFM materials could appear
without the assistance of SOC, including transverse spin
current in collinear [45–47] and noncollinear AFM systems
[48–50], AFM-induced spin splitting [51–56], giant pie-
zomagnetism [47], etc. In Refs. [48,49], spin-group sym-
metry is used for determining the conductivity tensor of
Mn3X (X ¼ Sn, Ir, Ga, and Ge) without SOC, showing
more symmetry restrictions for allowed spin conductivity
compared to the case with SOC. In Refs. [55,56], broken of
a combined operation of translation and pure spin rotation

FIG. 1. Four-quadrant diagram describing the symmetry of solids. The general single-electron Hamiltonians, space groups, and their
representative group elements are shown for each quadrant. Compared with the conventional crystallographic groups, the key
characteristic of spin group is the partial decoupling between spatial rotation CnðθÞ and spin rotation UmðφÞ, where m and n denote the
rotation axes, and the real scalars φ and θ are the rotation angles. For the materials with SOC, i.e., the quadrants III and IV, the spatial and
spin rotations are completely locked. For example, a spatial rotation by 2π=3 requires a simultaneous spin rotation by 2π=3 along the
same axis. For the materials without SOC, the spin and spatial rotations are completely or partially decoupled, which implies that one
symmetry operation could be composed of a spin and a spatial rotation with different rotation axes and angles. For the nonmagnetic case
(quadrant II), we can either consider spatial rotation only or add a totally unconstrained spin rotation, which constitutes a SO(3) group
for spin. For magnetic cases (quadrant I), spin rotation is constrained by the magnetic orders of the system, which allows more
operations that are disallowed by SOC but less than the full SO(3) group. The schematic plot in quadrant I shows that, for a
specific magnetic order, we can have a symmetry operation that is composed of a spatial rotation of 2π=3 and a spin rotation of 4π=3
along the same axis. Such operations are written as fUmðφÞkCnðθÞjτg where the spatial and spin rotation axes and angles could be
different.
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that flip spin direction gives rise to a type of antiferro-
magnet with spin-split bands. In the other works concern-
ing nontrivial effects of AFM order, spin-group symmetry
may not be taken into account but actually can act as an
effective tool in explaining the predicted results.
Indeed, it is known that symmetries concerning spin

and orbital degrees of freedom are decoupled in magnetic
materials with negligible SOC, but such symmetries can
hardly be fully comprehended without spin-group theory.
Most previous studies relating to spin-group symmetries
consider symmetry operations leaving a specific
Hamiltonian invariant, posing limitations in applying a
uniform theory to magnetic materials with all kinds of spin
arrangements, including collinear, coplanar, and noncopla-
nar spin configurations. In Ref. [57], for example, the
Hamiltonians considering collinear magnetic order are
block diagonal, which greatly simplifies the symmetry
analysis of the system. However, such an approach is not
applicable to noncollinear magnetic configurations without
SOC. On the other hand, the recent progress of condensed-
matter physics, in which the geometric phase, topological
matter, and emergent quasiparticles play an essential role,
paves a way for the application of spin groups in describing
complicated magnetic phases. Hence, there is an urgent
need to establish the connection between the powerful spin-
group theory and the frontier of modern condensed-matter
studies.
Here, we systematically study the description of spin-

1=2 electrons in magnetic lattices by spin groups and
their applications on the topological electronic structures.
Starting from general single-electron Hamiltonians, we first
demonstrate that the description of the full symmetry group
of a spin-orbit-decoupled system with on-site local mag-
netic moments naturally points to spin groups (Sec. II).
Exemplified by a spinful hexagonal molecule model, we
pedagogically elucidate that compared with magnetic
groups where the spin and spatial rotations are completely
locked to each other, in spin groups, more discrete or
continuous spin rotations under a spatial rotation are
permitted. We further derive comprehensive classifications
of SPGs that are direct products of the nontrivial and spin-
only part, including 252 and 90 SPGs to describe the
coplanar and collinear magnetic structures, respectively
(Sec. III). Exemplified by a kagome lattice model, we
derive the irreducible corepresentations of the little spin
group at high-symmetry momenta and illustrate the result-
ing energy degeneracies that cannot be understood by the
conventional magnetic (double) groups (Sec. IV). Within
the regime of spin group, we find more symmetry oper-
ations that would lead to new topological phases such as a
SOC-free Z2 topological insulator (TI) with unprecedented
surface-node structures, further enriching the existing zoo
of topological materials (Sec. V). For materials realization,
we show that square-net compounds AMnBi2 (A ¼ Sr, Ca)
could realize such Z2 topological phases with surface-nodal

lines as well as bulk Dirac points at generic momenta
protected by spin-group symmetries (Sec. VI). Our
work appeals to the general interest in utilizing spin group
in various fields with an expanded material pool for
potential spintronics applications, which contains candi-
dates with both light elements and nontrivial electronic
properties.

II. GENERAL SINGLE-ELECTRON
HAMILTONIANS

To begin with, we apply spatial and spin rotational
operations on the general single-electron Hamiltonians to
illustrate the requirements of symmetry operations in
various cases. For a nonmagnetic system without SOC
[H ¼ ½p̂2=ð2mÞ� þ Vðr̂Þ], the wave functions are labeled by
the single-valued representations of the Vðr̂Þ-determined
SG, of which the rotational elements contain the spatial
rotations CnðθÞ solely. When the general SOC term
HSOC ¼ ½1=ð2m2c2Þ�½∇Vðr̂Þ × p̂� · σ̂ is added, neither spa-
tial rotation CnðθÞ nor spin rotation UmðφÞ alone, but
only a locked combination UnðθÞCnðθÞ can keep HSOC

invariant. The resulting spinor wave functions furnish the
double-valued representations of the Vðr̂Þ-determined
double SG. To describe the magnetic systems, we apply
Hmag ¼ Sðr̂Þ · σ̂ under the framework of single-particle
mean-field approximation [58–60], where Sðr̂Þ stands for
the r-dependent exchange field due to the distribution
of local magnetic moments, and σ̂ is the spin operator.
Note that Hmag resembles the form of the double-
exchange model widely used to describe the magnetic
phase transitions of manganites [61–63]. If H þHsoc þ
Hmag is considered, the locking between spin and spatial
rotations still holds, while the full symmetry description
requires double MSG with the inclusion of time-reversal
operation T.
If we consider the symmetry operations of H þHmag,

i.e., a magnetic system without SOC, it is straightforward
to prove that the complete locking of spatial and spin
rotations is no longer required. Instead, partially locked
rotations, i.e., UmðφÞCnðθÞ, with CnðθÞ keeping Vðr̂Þ
invariant, could keep Hmag invariant and thus the total
Hamiltonian. Note that Sðr̂Þ presents the effects of
spatially distributed magnetic moments residing at the
atomic sites with a given magnetization direction, cou-
pling with the spin through exchange-correlation inter-
actions. Unlike SOC, such a spin-spatial coupling is
nonrelativistic and constrains UmðφÞ with CnðθÞ in
various ways according to the specific spin arrange-
ment, forming spin groups, as discussed below (see
Appendixes A–C). The Hamiltonians and symmetry
groups describing different systems are summarized in
Fig. 1, with the derivation of the constraints provided in
the Supplemental Material, Sec. II [64].
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III. SPIN POINT GROUP: PARTIALLY
DECOUPLED SPIN AND SPATIAL ROTATION

Spin group includes the SPG and SSG. We first discuss
SPG, whose elements are denoted by fUmðφÞ; TUmðφÞk
CnðθÞ; ICnðθÞg. While spatial inversion I can combine
CnðθÞ forming improper rotations and mirror reflections,
time-reversal symmetry T reverses spin and is thus written
in the spin space (T2 ¼ −1 in spin-1=2 electron system)
[72]. For simplicity, we first consider proper rotations
only, i.e., fUmðφÞkCnðθÞg. The partial coupling between
spin and spatial operations implies pure spin rotation
fUmðφÞkEg and coupled spin-spatial rotation, the latter
of which forms nontrivial SPGs containing elements of the
form fUmðφÞkCnðθÞg with CnðθÞ ≠ E (E is the identity
rotation) except identity element fEkEg. Reference [38]
constructed all nontrivial SPGs in 3D crystals by combin-
ing the factor groups of PGs and their exhaustive iso-
morphic groups as the spin part. Here, different from
mathematical construction, we focus on an exemplified
structure with spin arrangements to illustrate how the
regime of spin group differentiates the conventional mag-
netic group in permitting much more symmetry operations
and the resulting physical consequence in a magnetic
material with negligible SOC in terms of band degeneracy
and topological electronic structure.
To illustrate that for certain configurations, SPG

generally possesses more symmetry operations than the
conventional MPG, we consider a spinful hexagonal mole-
cular structure with the spatial rotational group D6 with

generators C6z½Czðπ=3Þ� and C2x½CxðπÞ�, as shown in
Fig. 2(a). Placingmagneticmoments on each site, in general,
reduces the D6 symmetry. Considering MPG symmetry
(with SOC), the only spin configuration that maintains D6

symmetry is the in-plane spin arrangement shown in
Fig. 2(c), while there are more possibilities for SPG
symmetry. Without loss of generality, we build a single-
orbital (e.g., dz2) tight-binding (TB) model with in-plane
local magnetic moments having the same magnitude but
different coplanar directions, Si¼S½cosðϕiÞ;sinðϕiÞ;0� [see
Fig. 2(a)]. The matrix elements of the Hamiltonian are
written as

hi; zi · σ ¼ αjĤjj; zj · σ ¼ βi
¼ t½δi;jþ1 þ δi;j−1�Xðϕi − ϕjÞαβ þ δi;jðJSσzÞαβ; ð1Þ

where we choose the basis functions with local spin
quantization axis directing along local magnetic moments,
i.e., zi ¼ ½cosðϕiÞ; sinðϕiÞ; 0�, and XðθÞ is defined as

XðθÞ≡
�
cosðθ=2Þ i sinðθ=2Þ
isinðθ=2Þ cosðθ=2Þ

�
. We then check all pos-

sible fUmðφÞkCzðπ=3Þg and fUmðφÞkCxðπÞg operations
that leave the Hamiltonian invariant and find that a
spatial rotation Cnð2π=dÞ could couple a spin rotation
Um½ð2pπÞ=d� with d being the order of rotation and p ¼
0; 1;…; d − 1 (see Supplemental Material, Sec. III [64]).
Consequently, there are seven inequivalent types of spin
configurations containing Czðπ=3Þ and CxðπÞ spatial rota-
tions, including one collinear ferromagnetic (FM), one

FIG. 2. Symmetries of various spin configurations within the regime of spin point group. (a) A spinful hexagonal molecule with D6

spatial symmetry. (b)–(h) Seven inequivalent spin configurations of the hexagonal molecule containing C6z and C2x spatial rotations.
The corresponding nontrivial SPG symbols and generators are shown. We follow the notations of SPG in Ref. [38], with the detailed
explanation provided in Appendix C. (i) Symmetry hierarchy from SPG to MPG for various spin arrangements. SOC, spin-orbit
coupling; MO, magnetic order;Gp0, PG for spinless system (containing spatial operations only);Gp, PG with complete locking between
spin and spatial degrees of freedom; GMP, MPG; GSP, full SPG; GNSP, nontrivial SPG.
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collinear AFM, one noncollinear FM, and four coplanar
AFM configurations. Their nontrivial SPG symbols and
generators are shown in Fig. 2. Furthermore, the matrix
elements of the spin-group Hamiltonian are functions of the
angles between the local moments of the neighboring sites;
hence, rotating all the moments by the same angle leaves the
eigenvalues of the Hamiltonian invariant. The abovemen-
tioned properties explicitly elucidate how the spin and
spatial rotation “partially” couple to each other in magnetic
materials without SOC.
By considering spatial and spin rotation separately, the

SOC effect could be considered as a constraint to limit the
relationship of CnðθÞ and UmðφÞ that reduce symmetry.
Consequently, spin group itself could serve as a unified
theory of both nonmagnetic and magnetic groups, with and
without SOC.We summarize the symmetry hierarchy in the
context of SPG operations in Fig. 2(i). The specific
hierarchy diagram for the spinful hexagonal molecule with
various spin arrangements is shown in the Supplemental
Material, Sec. III [64]. The nonmagnetic or paramagnetic
phase without SOC, where spin rotation is fully indepen-
dent of the spatial operations, has the highest symmetry,
i.e., the direct product of the spatial part Gp0 and spin part
SOð3Þ × ZT

2 (ZT
2 ¼ fE; Tg, “×” denotes the internal direct

product, while “⊗” denotes the (external) direct product of
two groups; see the Supplemental Material, Sec. I [64]).
With SOC, the symmetry degrades to subgroups Gp × ZT

2

by adding the constraint of the complete spin-space
coupling (type-II MPG, 32 gray groups). The further
addition of magnetic orders leads to conventional magnetic
group GMP, including type I (32 colorless MPGs) and
type III (58 black-white MPGs).
The symmetry hierarchy also has another branch by adding

magnetic order first and then SOC, leading to SPGs and
MPGs, respectively. There are 598 nontrivial SPGs GNSP
[38], which could describe noncoplanar spin arrangements.
In addition, for coplanar moments, there exists a bosonlike
time-reversal group that forms the spin-only PG ZK

2 ¼
fE; TUmðπÞ ¼ Kg, where K denotes complex conjugation,
rendering the full SPG GSP ¼ GNSP × ZK

2 . For collinear
moments, the full SPGs isGSP ¼ GNSP × ½SOð2Þ⋊ ZK

2 �with
an additional SO(2) rotational symmetry group along the
common direction of the spins (see Appendix B). After a
comprehensive classification, we obtain 252 and 90 SPGs to
describe the symmetries of coplanar and collinear magnetic
structures without SOC, respectively (see Appendix C).

IV. SPIN SPACE GROUP AND BAND
DEGENERACY

By considering the translational symmetry of the lattice,
one can easily generalize the operations of SPG to SSG,
fUmðφÞkCnðθÞjτg, where τ denotes the spatial translation
within a primitive cell. Similarly, the analogous symmetry
hierarchy for SPG in Fig. 2(i) could be generalized to SSG

by involving color Bravais lattices, which certainly include
the current 1651 MSGs (also known as Shubnikov groups).
Because of the complexity of color Bravais lattices, the
exhaustive construction of SSGs is complicated, with an
infinite number of possible types.
We next perform a case study to illustrate the additional

band degeneracies induced by SSG symmetry. We consider
a transition-metal layer with kagome lattice and noncol-
linear AFM spin configuration shown in Fig. 2(e), which is
similar to the spin arrangement of the noncollinear anti-
ferromagnets Mn3Ge and Mn3Sn [73–76], as shown in
Fig. 3(a). By constructing a simple single-orbital TB lattice
model, we show that the electronic structure of such a
magnetic lattice system should be described by SSG rather
than MSG. The lattice Hamiltonian is written as follows:

H ¼
X
α;β

� X
hR;i;R0;ji

ta†R;i;αδα;βaR0;j;β

þ J
X
R;i

a†R;i;αðSi · σÞα;βaR;i;β
�
: ð2Þ

The first term is the nearest-neighbor hopping, and the
second term counts the effect of the local magnetic moment
Si. Figures 3(b) and 3(c) show the SOC-free band structures
of such a six-band model (including spin) without and with
magnetic order, respectively. The nonmagnetic kagome
structure with P6/mmm symmetry exhibits its prototypical
band structure, including a flat band and a Dirac cone at K.
By adding the noncollinear AFM order, the spin-degenerate
bands in Fig. 3(b) split into two sets of Dirac cones without
opening a gap. Apparently, such a twofold degeneracy
certainly cannot be interpreted with a MSG Cmm’m’ that
supports only 1D irreducible corepresentations at the K
point. Such degeneracies were also obtained in band
structures of noncollinear AFM kagome models [49,77].
While for collinear AFM order, the Hamiltonian is block
diagonal for spin-up and spin-down components [57,78],
the noncollinear Hamiltonian such as Eq. (2) cannot be
decomposed straightforwardly; hence, we apply the group
representation theory that fully describes the system to
analyze the band degeneracies at the high-symmetry
momenta.
First of all, we construct all irreducible corepresentations

of the little spin group at a high-symmetry momentum via
the similar procedure of deriving irreducible corepresenta-
tions for magnetic groups [2]. Thus, the compatibility
relations, i.e., the correspondence among the representations
of a nonmagnetic group, spin group, and magnetic group,
can be obtained (see Appendix D for the methods of
obtaining the irreducible corepresentations of little co-
groups). Then, starting from the representations of the
nonmagnetic site groups furnished by atomic orbitals sitting
on a certain Wyckoff position, we obtain the nonmagnetic
band representations of the little group at high-symmetry
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momentum [16]. Finally, the correspondence between
single-valued nonmagnetic representations and spin-group
corepresentations gives rise to the resulting band represen-
tations of a spin group (see the Supplemental Material,
Sec. V for the details of the TB model as well as the
irreducible corepresentations of little co-groups [64]).
The band degeneracy and compatibility relations at theK

valley shown in Fig. 3(c) can be successfully explained
by spin-group symmetry. As shown in Fig. 3(b), the dz2
orbitals on the three kagome sites (Wyckoff position 3g)
give rise to two kinds of representations K1ð2Þ and K5ð4Þ
including spin (the number in parentheses denotes the
degree of degeneracy). By choosing the eigenstates of
spatial rotoinversion C6zI as the basis functions and
adding spin degrees of freedom, we operate the spin-group
generators fUz½ð2πÞ=3�jjCzðπ=3ÞIj0g, fUxðπÞjjCxðπÞj0g,
and fTUzðπÞjjIj0g on the Hamiltonian and find that
K5ð4Þ splits into three levels with two 1D irreducible

corepresentation Ks
3 (1), Ks

4 (1), and a 2D irreducible
corepresentationKs

6 (2), consistent with Fig. 3(c) calculated
by the TB model. The compatibility of the band splitting is
summarized in Fig. 3(d).

V. QUASI-KRAMERS DEGENERACY AND Z2
MAGNETIC TOPOLOGICAL INSULATOR

Spin-group operations, including an enormous number
of combinations of pure spatial operations, time reversal,
and pure spin rotations, significantly enhance the sym-
metries of magnetic materials. As a result, there could
be various topological phases unexpected before, protected
by spin-group symmetries. Analogous to Z2 TIs protected
by T, we next consider antiunitary operations squared into
−1 in spin groups, which could allow Z2 topological
classification in 2D subspaces of the 3D Brillouin zone
[79]. We list all such symmetry operations in the regime of

FIG. 3. (a) A spinful kagome lattice with noncollinear AFM spin configuration shown in Fig. 2(e). (b),(c) SOC-free band structure of
the kagome lattice without (b) and with (c) magnetic order. The band eigenvalues at K include a 4D irreducible representation K4 and a
2D irreducible representation K1 if considering spin. The numbers in the paratheses represent the dimension of representations. The
band eigenvalues of (c) at K include two twofold degenerate points belonging to 2D irreducible corepresentation Ks

6 and two
nondegenerate points belonging to Ks

3 and Ks
4, respectively. (d) Level splitting at K with consecutive addition of magnetic order and

spin-orbit coupling. MO and SOC denote magnetic order and spin-orbit coupling, respectively. The irreducible (co)representations
of bands are shown in the diagram, with the numbers in the paratheses denoting the dimensionality (considering spin). Note: There are
two K points with different little co-groups in the framework of magnetic group, and the one with higher symmetry is chosen for
demonstration.
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SSG in Table I and define the resulting degeneracy at
certain high-symmetry k points as “quasi-Kramers degen-
eracy.” Furthermore, we consider only the symmetries
that still persist in certain cleaved surfaces, i.e., possibly
having symmetry-protected topological surface states [e.g.,
fTkIj0g and fTUnðπÞkCzðπÞjτz=2g are excluded]. Note
that there are other Z2 topological classifications protected
by crystalline symmetries that are unitary or squared
to 1 [80–82], which can also be extended to spin-group
symmetries.
It is found that only two symmetry operations in Table I

also exist in MSG, corresponding to AFM Z2 TI (e.g.,
MnBi2Te4) [83–87] and topological semimetals with
symmetry-protected double-helicoid surface states pre-
dicted in nonmagnetic systems [88,89], respectively. We
confirm that such topological phases could still exist
without SOC. On the other hand, the other five sym-
metries supporting quasi-Kramers degeneracy exist solely
in SSGs, without any analogs in nonmagnetic materials or
magnetic materials with large SOC. Among them,
fTkCzðπÞj0g, fTkm½001�j0g, fTkm½001�jτx=2g contain both
pure spatial rotations and the spin-1=2 time-reversal T.
The (001) surface bands with fTkCzðπÞj0g symmetry are
all doubly degenerate, and thus do not protect gapless
surface states in general. However, if the z axis is the axis
of high rotational symmetry or there are additional spin
rotational symmetries, the surface states may manifest a
double Dirac point, which has been predicted only in bulk
bands [10,90]. The three spin-group symmetries contain-
ing spatial mirror reflection m½001� support the surface
Dirac nodal line, which has not been reported in magnetic
systems. Among them, fTkm½001�j0g could lead to Z2

classification for a system and the corresponding 3D
quantum spin Hall phases. The last symmetry
fTUnðπÞkEjτz=2g also supports Z2 magnetic TI, similar
to fTkEjτz=2g, except that the surface Dirac point is
located at ð0; πÞ or ðπ; πÞ momenta in momentum space.
We note that similar emergent Z2 topological phases
protected by order-two nonsymmorphic antiunitary
symmetries were discussed mathematically [91], while

fTUnðπÞkEjτz=2g in SSG provides a physical scenario to
realize such exotic topological phases.
We next take fTkm½001�j0g and fTUnðπÞkEjτz=2g as

examples to illustrate the new Z2 magnetic TIs and various
unexpected surface-node structures. We start from a 3D
Dirac semimetal model without SOC [70], which is
analogous to a 3D version of graphene. Such a phase
can easily transform to a Weyl semimetal under local
magnetic moments Sz along the z direction. We can thus
tune the hopping parameters to realize a Chern insulator
phase at the kz ¼ π=2 plane of the Brillion zone. Then, by
building an AFM structure through cell doubling [Fig. 4
(a)], we can annihilate the Weyl points with opposite
chirality and create a gapped insulator. By constructing
an eight-band model (see the Supplemental Material,
Sec. VI for details [64]), we realize a Z2 magnetic TI
protected by both fTkm½001�j0g and fTUnðπÞkEjτz=2g
symmetries, with gapless Dirac surface states at the
boundaries of all 2D planes perpendicular to the kz
direction. Consequently, it manifests surface Dirac nodal
lines at the kx ¼ 0 or kx ¼ π line for any surfaces
perpendicular to m½001� [Figs. 4(c) and 4(e)], which is
impossible in conventional TIs protected by T or
fTkEjτz=2g. To examine the impact of each symmetry,
we apply an in-plane FM canting to break fTkm½001�j0g
[Fig. 4(b)]; then, the surface-node structure becomes a
Dirac point at ð0; πÞ [Figs. 4(d) and 4(f)], which is
consistent with the symmetry analysis shown in Table I.
If fTUnðπÞkEjτz=2g is broken by the dimerization of the
two layers, the Dirac point at ð0; πÞ is finally gapped
[Figs. 4(g) and 4(h)]. Therefore, we demonstrate that
unlike nonmagnetic materials and magnetic materials with
SOC, magnetic materials with negligible SOC possess
new Z2 topological classification with unprecedented
surface-node structures protected by SSG symmetries.
We note that the previous studies of SOC-free TIs focused
on spinless systems protected by pure crystalline sym-
metry without considering spin rotation or time-reversal
symmetry, which differs from the situation discussed
here [32].

TABLE I. SSG symmetries supporting quasi-Kramers degeneracy. The SSG symmetries, the momenta with protected twofold
degeneracy, the surfaces that maintain the corresponding symmetry, and the possible surface states with various nodal structures are
listed. Square of some operators: T2 ¼ −1, UnðπÞ2 ¼ −1, m½001�2 ¼ 1, τz=22 ¼ 1ð−1Þ for kz ¼ 0ðπÞ.

SSG symmetry
Momenta with protected

twofold degeneracy
Surfaces with
the symmetry Possible surface states

fTkEjτz=2g TRIM within kz ¼ 0 plane (xy0) Dirac point at ð0; 0Þ or ðπ; 0Þ
fTUzðπÞkm½001�jτx=2g ðπ; 0; kzÞ and ðπ; π; kzÞ lines (010) Dirac nodal line at kx ¼ π
fTkCzðπÞj0g kz ¼ 0 and kz ¼ π planes (001) Possible double Dirac point
fTkjm½001�0g ð0; 0; kzÞ, ð0; π; kzÞ, ðπ; 0; kzÞ, and ðπ; π; kzÞ lines (xy0) Dirac nodal line at kx ¼ 0 or kx ¼ π
fTkm½001�jτx=2g ð0; 0; kzÞ and ð0; π; kzÞ lines (010) Dirac nodal line at kx ¼ 0

fTUnðπÞkm½001�jτx=2g ðπ; 0; kzÞ and ðπ; π; kzÞ lines (010) Dirac nodal line at kx ¼ π
fTUnðπÞkEjτz=2g TRIM within kz ¼ π plane (xy0) Dirac point at ð0; πÞ or ðπ; πÞ
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VI. MATERIALS REALIZATION
OF NODAL-LINE SEMIMETALS

A remarkable consequence of symmetry and topology
in the electronic structure of materials is the existence of
protected degeneracies, leading to various topological
semimetals such as Dirac, Weyl, nodal-line, and nodal-
surface semimetals. Thus, the corresponding symmetry
design principles could be established to conduct a com-
prehensive material search. Here we take two widely
studied magnetic topological semimetals, e.g., SrMnBi2
and CaMnBi2, to illustrate their unrevealed bulk and
surface nodes that exist only under the regime of spin-
group symmetries, including Dirac points at arbitrary k
points and surface nodal lines. Note that we turn off SOC in
the calculation of these well-studied large-SOC materials
to illustrate the distinct topological phases in a semi-
realistic setup. The identification of more suitable material
candidates described by spin-group symmetries is left for
future work.
AMnBi2 (A ¼ Sr, Ca) are layered materials with aniso-

tropic Dirac fermions [see Fig. 5(a)], inspiring the study of
square-net materials as topological semimetals such as

ZrSiS [92–94]. Despite a checkerboard-type AFM con-
figuration, the nodal properties in such compounds are
typically treated via nonmagnetic models [71]. Without
SOC, the diagnosis for nonmagnetic topological semimet-
als with inversion symmetry indicates that AMnBi2 are bulk
nodal-line semimetals [34] (see the Supplemental Material,
Sec. VII [64]). The AFM magnetic order further turns the
nodal lines to discrete Dirac points with fourfold degen-
eracy. Compared with the case with SOC where the Dirac
points occur only at high-order rotational axes or Brillouin
zone boundary, the Dirac points protected by spin-group
symmetry could occur even at arbitrary k points, like chiral
Weyl points. Such a peculiar property could be understood
by the k · p low-energy Hamiltonian. By applying fTkIj0g
(iσyτxK) and SO(2) spin rotation along the spin direction
(e−iθσz), the symmetry-allowed Hamiltonian takes the form
HðkÞ ¼ f0ðkÞσ0τ0 þ f1ðkÞσ0τx þ f2ðkÞσ0τy þ f3ðkÞσzτz
with the basis fjψA ↑i; jψB ↑i; jψA↓i; jψB↓ig, where A
and B represent two sublattices connected by fTkIj0g. The
last three terms of HðkÞ mutually anticommute, leading to
stable Dirac nodes that could appear at generic momenta
and cannot be gapped by any perturbation that maintains

FIG. 4. Z2 magnetic topological insulators protected by SSG symmetries. (a),(b) A magnetic system with (a) A-type AFM structure
invariant under fTkm½001�j0g and fTUnðπÞkEjτz=2g SSG symmetry and (b) fTUnðπÞkEjτz=2g SSG symmetry. (c),(d) The corresponding
(100) surface nodal structures in the Brillouin zone, including (c) surface nodal line and (d) surface Dirac cone. (e),(f) The corresponding
surface band dispersion. (g) The configuration with broken fTUnðπÞkEjτz=2g by the dimerization of the two layers. (h) the
corresponding (100) surface band dispersion with a gapped Dirac cone.
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fTkIj0g, SO(2) spin rotation and translation symmetries.
The Dirac points of SrMnBi2 calculated by density-func-
tional theory (DFT) are shown in Fig. 5(b) (see methods of
DFT calculations in Appendix E).
According to the above discussion, fTkm½110�j0g spin-

group symmetry in AMnBi2 protects Z2 topological clas-
sification with unprecedented surface nodal lines. To verify
this, we next apply DFT calculations on SrMnBi2 under
uniaxial pressure [the lattice parameter c (along the z
direction) is reduced by 10%]. Figure 5(c) plots the surface
states on the (001) surface, showing a gapless Dirac cone at
both the Γ̄0 and M̄0 points. The existence of the two Dirac
points at (0.280,0.280,0) and (0.293,0.293,0.272), protects
a region in which any vertical planes in the Brillouin zone
parallel to m½110� yield a nontrivial 2D Z2 ¼ 1 phase, as

indicated by the Wilson loop of a representative plane
[shown in green in Fig. 5(b)] and the transition of Z2 as a
function of the momentum along the [110] direction [see
Figs. 5(d) and 5(e)]. Furthermore, the surface nodes form a
line between the surface projections of the two Dirac
points. The fourfold rotation symmetry in this system
transforms the nodal line into four nodal lines, with two
protected by fTkm½110�j0g and the other two protected
by fTkm½11̄0�j0g.

VII. DISCUSSION

Although established decades ago, the concept of spin
group is not widely explored or applied due to the lack of
suitable condensed-matter scenarios, especially in spin-1=2

FIG. 5. Z2 topological phase protected by fTkm½110�j0g symmetry in square-net materials. (a) Crystal structure of AMnBi2 (A ¼ Sr,
Ca). The A atoms are not plotted for clarification. (b) Locations of 16 Dirac points and the corresponding surface nodal lines of pressured
SrMnBi2 (with lattice parameter c reduced by 10%). The equivalent Dirac points that are connected by symmetry are denoted by the
same color. There are three types of nonequivalent Dirac points, with eight Dirac points located at generic momenta (denoted by purple)
represented by ð0.690; 0.066; 0Þ ðÅ−1Þ; four Dirac points located along the Γ–X line (denoted by cyan) represented by (0.280,0.280,0),
and four Dirac points located along the M–G line (denoted by blue) represented by (0.293,0.293,0.272). The four surface nodal lines
terminate at the surface projections of the Dirac points (denoted by the dashed lines). (c) Topological nodal-line surface states of
pressured SrMnBi2. The k path is from Γ̄0ð0.287; 0.287Þ to M̄0ð0.973;−0.399Þ. (d) Wilson loop calculation on a plane [colored by green
in panel (b)] parallel tom½110�. The integration along Γ̄0 − M̄0 is calculated along kz from kz ¼ 0 to the Brillouin zone boundary kz ¼ π=c.
(e) The transition of 2D Z2 value defined at the vertical planes in the Brillouin zone parallel to m½110�, as a function of the momentum
along the [110] direction.
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electronic systems. The main purpose of our work is to
build the bridge between the powerful but largely over-
looked symmetry group and the frontier of quantum-
material studies. The abovementioned symmetry-protected
degeneracy and Z2 topological classification are merely the
tip of the iceberg for the application of spin group, leaving
fruitful diversity of topological phases and emergent
fermions induced by such an enhanced symmetry group
to be further explored. For example, a recent work realizes a
condensed-matter counterpart of the SUð2Þ flavor sym-
metry in particle physics, leading to a new type of
AFM Weyl semimetal protected by spin-group symmetries
[95]. Such nodal structures in both bulk and surface states
could also shed light on the non-Abelian band topology in
magnetic metals [13]. Furthermore, symmetry indicators
based on spin group would also give rise to more
possibilities of topological crystalline insulators and
semimetals.
We next discuss two physical effects of the spin mirror

symmetry fTUzðπÞkEj0g existing in coplanar and collinear
spin groups (the comprehensive list of 252 and 90 SPGs,
respectively, is provided in the Supplemental Material,
Sec. IV [64]). The first one is spin-momentum locking. For
coplanar spin groups, if spin splitting exists owing to
broken fTkIj0g symmetry, the spin texture, i.e., the
expectation of spin operator with respect to the momentum
SðkÞ, has to be ½SxðkÞ; SyðkÞ; SzðkÞ� ¼ ½Sxð−kÞ; Syð−kÞ;
−Szð−kÞ�. In addition, for collinear spin groups with
moments along the x axis, the existence of the SO(2)
group forces nondegenerate energy eigenstates to be the
eigenstates of σx; hence, only inversion-symmetric Sx
components survive, i.e., ½SxðkÞ; 0; 0� ¼ ½Sxð−kÞ; 0; 0�.
The second one is charge and spin transports. Because
the expression of Berry curvature is independent of spin,
for coplanar magnets, fTUzðπÞkEj0g forces the integral
of Berry curvature throughout the Brilloun zone to be zero,
in analogy to the role of T for nonmagnetic systems. As a
result, the anomalous Hall effect cannot be induced by
coplanar magnetic orders without the assistance of pertur-
bations such as SOC and magnetic tilting. However,
fTUzðπÞkEj0g, in general, does not forbid transverse spin
current and the spin Hall effect in both coplanar [48–50]
and collinear AFM systems [45–47]. Particularly, in
coplanar AFM systems, both T-odd (transverse spin
current) and T-even (spin Hall effect) contributions could
be nonzero [48,49], while only T-odd contributions exist in
collinear AFM systems.
While SOC is an intrinsic relativistic property for all

materials depending on the atomic mass of the constituting
elements, the theory of spin group, which describes the
symmetry of a magnetic ground state, acts as the very
starting point to understand the behavior of magnetic
materials with SOC. For most materials, even with strong
SOC, e.g., 10–100 meV, its influence on the electronic
structure is still small compared with those caused by

hopping, exchange splitting, crystal field, etc. (typically in
the order of eV). Consequently, one can construct the zero-
order Hamiltonian of a magnetic ground state based on spin
group and add SOC as high-order perturbation terms. Such
an approach also provides an alternative paradigm to
accurately understand the role of SOC by differentiating
the contribution of SOC and the contribution of magnetic
moments and crystal lattice. In addition, each element of
the response tensors χðnÞ in Kubo formalism for observables
like spin-orbit torque correlates the symmetry of crystals
[96], determining its zero or nonzero value but not
the magnitude. Therefore, the conventional MSG cannot
tell if a symmetry-permitted element is tiny or large,
even if neglecting SOC is an appropriate approximation.
Such an element could turn out to be zero under the regime
of spin group, providing rational guiding principles for
experiments.
Last but not least, since the symmetries of spin and

space degrees of freedom are considered separately, spin
group could provide a unified group theory for describing
materials in all four quadrants of Fig. 1. Recall that the
diagnosis of degeneracy and topological phases with and
without SOC has been very different because of the
applications of single-valued and double-valued represen-
tations for the same symmetry operations, leading to
distinct commutation relations and eigenvalues in different
contexts. In the regime of spin group, the little co-group
representations in the momentum space of different quad-
rants are naturally connected with each other by decom-
posing the subduced (co)representation of the parent group,
as shown in the hierarchy relationship of Fig. 2(i). To
conclude, spin group serves as a bridge to connect the
seemingly independent descriptions based on nonmagnetic
and magnetic groups and paves a new way for under-
standing the emergent properties of magnetic quantum
materials.
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works on spin-group symmetry [97–100]. In Ref. [97], the
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magnon band structures with nodal point, line, and
volume protected by spin-group symmetry are illustrated
via Kitaev-Heisenberg models. Reference [98] predicts a
new type of collinear antiferromagnet with spin splitting
via spin-group symmetry analysis. Reference [99] derives
symmetry invariants of SPGs with the form P × ZT

2 ,
indicating new excitations in the framework of spin group.
Reference [100] predicts a kind of eightfold-degenerate
fermion in two-dimensional antiferromagnet protected by
spin-group symmetry.

APPENDIX A: DEFINITION OF SPIN GROUP
AND ITS CLASSIFICATIONS

Thirty-two crystallographic PGs and 230 SGs are groups
that aim to describe 3D nonmagnetic crystals. For magnetic
crystals, the ordered spin arrangements in periodic lattices
are generally described by 122 MPGs and 1651 MSGs.
Such magnetic groups introduce the antisymmetric time-
reversal operation T that flips double-valued properties like
spin, thus enlarging the number of crystallographic group
types. However, spin, as a vector in 3D Euclidian vector
space, could have more than two values in realistic spin
arrangements, the symmetry operations of which include
spin rotations and spin inversion forming an orthogonal
group O(3) that keeps the dot product of any two vectors in
3D vector space invariant. The inversion of spin is realized
through T, for which we write the orthogonal group acting
on the spin space as

Osð3Þ ¼ SOð3Þ × ZT
2 ; ðA1Þ

ZT
2 ¼ fE; Tg; ðA2Þ

SOð3Þ ¼ fUnðωÞjn
¼ sinðθÞ cosðφÞx̂þ sinðθÞ sinðφÞŷ
þ cosðθÞẑ; θ ∈ ð0; π�;φ ∈ ð0; 2π�;ω ∈ ð0; 2π�g;

ðA3Þ

where UnðωÞ stands for spin rotation with rotation axis n
and rotation angle ω. Such group Osð3Þ is termed the
orthogonal group of spin symmetries.
When considering a spin arrangement in real space, we

must include spin operations and spatial operations at the
same time. One spin arrangement could be represented by a
three-component vector-valued function:

SðrÞ ¼ ½SxðrÞ; SyðrÞ; SzðrÞ�T: ðA4Þ

Then, spin group Gs is defined as any subgroup of the
external direct product of a group with elements exerting on
three-dimensional spatial coordinates (either PG or SG)
denoted as G0, and the orthogonal groups of spin sym-
metries, i.e., Osð3Þ:

G0 ⊗ Osð3Þ ¼ G0 ⊗ ½SOð3Þ × ZT
2 �: ðA5Þ

For G0 being PG Gp0, which is written as

Gp0¼fCnðωÞImjn
¼ sinðθÞcosðφÞx̂þsinðθÞsinðφÞŷ
þcosðθÞẑ;θ∈ ð0;π�;φ∈ ð0;2π�;ω∈ ð0;2π�;m¼0;1g;

ðA6Þ

where CnðωÞ stands for a spatial rotation operation with
rotation axis n and rotation angle ω, while I stands for
spatial inversion symmetry operation, every subgroup of
Gp0 ⊗ Osð3Þ is called SPG GSP, operations of which are
denoted as

fgskgg; ðA7Þ

with gs ∈ Osð3Þ and g ∈ Gp0, and

fgskggfg0skg0g ¼ fgsg0skgg0g; ðA8Þ

fgskgg−1 ¼ fgs−1kg−1g: ðA9Þ

We define gs and g acting on the spin space and
coordinate space, respectively,

gs∶ S → RðgsÞS; ðA10Þ

g∶ r → RðgÞr; ðA11Þ

where RðgsÞ and RðgÞ are the representation matrix of gs
and g in 3D Euclidian space, respectively. Then, for the
r-dependent spin arrangement SðrÞ, we have

gs∶ SðrÞ → RðgsÞSðrÞ; ðA12Þ

g∶ SðrÞ → S(Rðg−1Þr): ðA13Þ

Thus, it is natural to define the action of SPG operations
on the spin arrangement as

fgskgg∶ SðrÞ → RðgsÞS(Rðg−1Þr): ðA14Þ
If we are interested in the symmetry groups of realistic

molecule or crystal, we must consider another scalar-valued
function fðrÞ, which stands for the electric potential
function contributed by atomic nuclei. Since spin rotation
has no influence on electric potential, the action of SPG
operations is defined as

fgskgg∶fðrÞ → f(Rðg−1Þr) ðA15Þ
Note that for gs ¼ UnðωÞ=g ¼ CnðωÞ, we denote

R(UnðωÞ) ¼ RnðωÞ=R(CnðωÞ) ¼ RnðωÞ with RnðωÞ
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being the rotation matrix in 3D Euclidian space with
rotation axis and rotation direction represented by n and
rotation angle represented by ω. For gs ¼ T=g ¼ I, we
denote RðTÞ ¼ −I=RðIÞ ¼ −I, with I being the identity
matrix.
For G being space group Gs0, then every subgroup of

Gs0 ⊗ Osð3Þ is called a SSG GSS. We can further write
SSG operations as

fgskgjtg; ðA16Þ

where fgjtg ∈ G with g denoting the PG operation, and t
is a three-component real vector denoting the translation
operation. We have

fgskgjtgfg0skg0jt0g ¼ fgsg0skgg0jRðgÞt0 þ tg; ðA17Þ

fgskgjtg−1 ¼ fgs−1kg−1j − Rðg−1Þtg: ðA18Þ

The actions of fgskgjtg on spin arrangement and scalar
potential satisfy

fgsjjgjtg∶ SðrÞ → RðgsÞS(Rðg−1Þðr − tÞ); ðA19Þ

fgsjjgjtg∶fðrÞ → f(Rðg−1Þðr − tÞ): ðA20Þ

MSGs and MPGs include an antisymmetry (or time-
reversal) operation in addition to spatial symmetry oper-
ations while neglecting spin rotation operations. Thus,
they are incomplete, in a sense, for describing the full
symmetry of a general spin arrangement. When spin-orbit
coupling is included, MSGs and MPGs are accurate for
describing the symmetry of the Hamiltonian in physics
because the spin and lattice degrees of freedom must
rotate synchronously. Hence, including only spatial rota-
tion is enough for describing full symmetry. However,
when relativistic spin-orbit coupling is negligible, spin
rotations and spatial rotations have to be considered
separately, for which spin groups should be applied.
Reference [101] shows that every spin group Gs (either

SPG GSP or SSG GSS) can be written as a direct product of
a so-called spin-only groupGSO and a nontrivial spin group
GNS. Spin-only group stands for the group formed by pure
spin operations fgskEj0g (or fgskEg), while the nontrivial
spin group stands for the group that contains no pure spin
operations, i.e., all group elements contain spatial oper-
ations except the identity.
In Appendix B, we analyze all possible spin-only groups

for different types of spin arrangements. In Appendix C,
we comprehensively develop all possible combinations
between nontrivial SPGs GNSP and spin-only PGs GSOP
to provide a full description of the possible SPGs.

APPENDIX B: GROUPS CONSISTING
OF PURE SPIN OPERATIONS

A spin-only group consists of elements of the form
fgskEj0g (or fgskEg), which act on the spin configuration
SðrÞ as

fgskEj0g∶SðrÞ → RðgsÞSðrÞ: ðB1Þ

To analyze the spin-only groups for different spin
arrangements, we divide all of the pure spin operations
into four types, i.e., gs¼UnðωÞ (ω≠0), gs¼T, gs ¼
UnðπÞT, and gs ¼ UnðωÞT (ω ≠ 0 and ω ≠ π) and analyze
the conditions for SðrÞ to be invariants under them
separately. (We choose specific axes of spin rotations to
simplify our analysis.)

Type 1: gs ¼ UnðωÞ for ω ≠ 0. In this case, we have
SðrÞ ¼ R(UnðωÞ)SðrÞ. Then, there are two types
of spin arrangements that have UnðωÞ symmetry:
(1) SðrÞ is zero for any r corresponding to non-
magnetic spin arrangements. (2) If SðrÞ does not
belong to a nonmagnetic spin arrangement, SðrÞ
should be parallel to n corresponding to collinear
spin arrangements.

Type 2: gs ¼ T. If gs ¼ T, then the spin arrangements
invariant under fTkEj0g should satisfy SðrÞ ¼ −SðrÞ,
indicating nonmagnetic spin arrangements.

Type 3: gs ¼ UnðπÞT. If n ¼ z, then the spin arrange-
ments invariant under fUzðπÞTkEj0g should satisfy

SðrÞ ¼
� 1 0 0

0 1 0

0 0 −1

�
SðrÞ. Then, the spin arrange-

ments SðrÞ that have no z component have such
symmetry. We define all spin arrangements satis-
fying this condition that are not nonmagnetic or
collinear spin arrangements as coplanar spin arrange-
ments. Apparently, each spin arrangement that is
nonmagnetic, collinear, or coplanar is invariant
under fUnðπÞTkEj0g for certain n. Consequently,
the spin arrangements that are not coplanar, collinear,
or nonmagnetic are known as noncoplanar spin
arrangements.

Type 4: gs ¼ UnðωÞT (ω ≠ 0 and ω ≠ π). If
n ¼ z, then the spin arrangement that is
invariant under fUzðωÞTkEj0g satisfies SðrÞ ¼�− cosðωÞ sinðωÞ 0

− sinðωÞ − cosðωÞ 0

0 0 −1

�
SðrÞ. It is easy to check

that such an equation has no solution for SðrÞ
unless SðrÞ ¼ 0.

In conclusion, there are four types of spin arrangements
that have different spin-only groups. Since the spatial part is
always identitfied in spin-only groups, we write down only
the spin part of GSO for simplicity in the following.
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1. Nonmagnetic spin arrangements

The spin-only group is invariant under all the pure spin
operations:

GSO ¼ Osð3Þ: ðB2Þ

2. Collinear spin arrangements

Any spin rotation along the direction of spin arrange-
ment (e.g., z direction) could leave this type of spin
arrangement invariant, indicating SOð2Þ≡ fUzðωÞjω ∈
ð0; 2π�g spin rotation group. Furthermore, such a spin
arrangement is also invariant under UnðπÞT, where n could
be any direction perpendicular to z. We then have a binary
spin-only group defined as ZK

2 ≡ fE;UnðπÞTg. Then, the
full spin-only group is the internal semidirect product of
SO(2) and ZK

2 , i.e.,

GSO ¼ SOð2Þ ⋊ ZK
2 : ðB3Þ

Note that the internal semidirect product is because
SO(2) is a normal subgroup of GSO while ZK

2 is not.

3. Coplanar spin arrangements

From the discussion above, the spin-only group of such a
spin arrangement is

GSO ¼ ZK
2 ≡ fE;UnðπÞTg; ðB4Þ

where n denotes the direction perpendicular to the plane of
the spin arrangements.

4. Noncoplanar spin arrangements

The spin-only group of this type has only the identity
element

GSO ¼ fEg: ðB5Þ

APPENDIX C: FULL CRYSTALLOGRAPHIC SPIN
POINT GROUPS FOR COLLINEAR AND
COPLANAR SPIN ARRANGEMENTS

Crystallographic SPGs are SPGs being subgroups of
Gp0 ⊗ Osð3Þ where Gp0 is one of the 32 crystallographic
PGs. Construction of nontrivial SPGs from 32 PGs is
similar to obtaining the MPGs. However, the orthogonal
group of spin symmetries SOð3Þ × ZT

2 has an infinite
number of operations, the introduction of which into
crystallographic PGs requires us to find all normal sub-
groups of the 32 PGs and find all of the groups that are
subgroups of SOð3Þ × ZT

2 and isomorphic to the corre-
sponding quotient groups. Reference [37] shows that all
nontrivial SPGs can be obtained in the above approach if
we find all normal subgroups of the 32 PGs, construct all
quotient groups from these normal subgroups, and find

all subgroups of SOð3Þ × ZT
2 that are isomorphic to the

quotient groups through all possible isomorphic relations.
By applying such a procedure, Ref. [38] obtains 598 types
of nontrivial SPGs, with two groups defined to belong to
the same type if they are conjugate subgroups of the direct
product of general linear group in spin space and affine
group in physical space, i.e., GLð3Þ ⊗ GILð3Þ, which are
sufficient to describe noncoplanar spin arrangements
according to the discussion in Appendix B. However,
for collinear and coplanar spin arrangements, there are
pure spin operations; i.e., we have to consider SPGs that
are products of nontrivial SPGs and spin-only PGs, i.e.,
GSP ¼ GNSPGSOP. Such products could always be written
as semidirect products GNSP ⋉ GSOP because GSOP is
always a normal subgroup of GNSPGSOP. This could also
be written as a direct product GNSP ×GSOP by proper
selection of GNSP such that GNSP is also a normal subgroup
of GNSPGSOP. Thus, to classify the point groups of the
form GNSP × GSOP, we have to find all types of nontrivial
SPGs (GNSP) that could perform an internal direct product
with spin-only PGs GSOP. Since 598 types of nontrivial
SPGs are complete, and any SPG can be written as the
direct product of nontrivial SPGs and spin-only PGs,
such a classification should lead to a complete set of
SPGs to describe coplanar and collinear spin arrangements.
[We neglect nonmagnetic spin arrangements because they
obviously have symmetry groups of the form G0 ⊗ Osð3Þ
with G0 being one of the PGs or SGs]. We conduct such a
classification in the following two-step procedure:

Step 1: We find all types of nontrivial SPGs that allow
both GNSP and GSOP to be invariant under each other,
i.e., satisfy g−1GNSPg ¼ GNSP for all g ∈ GSOP and
h−1GSOPh ¼ GSOP for all h ∈ GNSP, and then deter-
mine the corresponding GNSPGSOP

0s (one nontrivial
SPG might correspond to several full SPGs). Since
both GNSP and GSOP are subgroups of Gp0 ⊗ Osð3Þ,
and GNSP ∩ GSOP ¼ ffEkEgg, the condition
g−1GNSPg ¼ GNSP for all g ∈ GSOP and h−1GSOPh ¼
GSOP for all h ∈ GNSP, implies that GNSPGSOP is a
group and GNSPGSOP ¼ GNSP ×GSOP. Then, we get
all types of full SPGs represented by GNSP ×GSOP.

Step 2: We consider full SPGs obtained from step 1
represented as groupsG1

NSP ×GSOP; G2
NSP ×GSOP;…;

Gn
NSP ×GSOP, with G1

NSP; G
2
NSP;…, and Gn

NSP belong-
ing to different types of nontrivial SPGs, but with
G1

NSP ×GSOP, G2
NSP × GSOP, …, and Gn

NSP ×GSOP

actually belonging to the same types of full SPGs.
Then, we choose one of the Gi

NSP ×GSOP to represent
this full SPG. In other words, we eliminate multiple
counting of the equivalent types of full SPGs.

As discussed in Appendix B, the full SPGs for coplanar
spin arrangements can be written as GNSP × ZK

2 , while the
full SPGs for collinear spin arrangements can be described
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by GNSP × ½ZK
2 ⋉ SOð2Þ�. Next, we separately classify full

SPGs for coplanar spin arrangements and for collinear spin
arrangements.

1. Classification of full SPGs
for coplanar spin arrangements

For coplanar spin arrangements, we have GSOP ¼ ZK
2 .

Note that we do not consider the relative directions of the
spin rotation axis and space rotation axis in the following
discussion because the variation of the relative direction of
the spin rotation axis and space rotation axis will not give
rise to the different types of spin group.

a. Step 1

Step 1 outlined above implies that if we write
ZK
2 ≡ ffEkEg; fTUnðπÞkEgg, the rotation axis n should

be either parallel or perpendicular to every spin rotation
axis of the spin rotation part of GNSP, i.e., Gs

NSP. Otherwise,
the condition that GSOP ¼ ZK

2 should be invariant under
GNSP will not be satisfied. Thus, this step excludes
the nontrivial SPGs whose spin part Gs

NSP is polyhedral
group, including T, Th, Td, O, and Oh, because we cannot
find a direction that is either parallel or perpendicular
to all the rotation axis. Thus, the options left for the
spin part Gs

NSP are 27 axial groups: Cnðn ¼ 1; 2; 3; 4; 6Þ,
Dnðn ¼ 2; 3; 4; 6Þ, Snðn ¼ 2; 4; 6ÞðS2 ¼ Ci; S6 ¼ C3iÞ,
Cnhðn ¼ 1; 2; 3; 4; 6ÞðC1h ¼ Cs ¼ C1vÞ, Dnhðn ¼ 2; 3;
4; 6Þ, Cnvðn ¼ 2; 3; 4; 6Þ, and Dndðn ¼ 2; 3Þ. For Gs

NSP
being different groups, the direction n is constrained
differently in order for the condition that g−1ZK

2 g ¼ ZK
2

for all g ∈ GNSP to be satisfied. We classify the ways n is
constrained into the following five cases.

Case 1: For Gs
NSP being C1 or S2ðCiÞ, n is not con-

strained.
Case 2: For Gs

NSP being C1h ¼ ffEkEg; fTUzðπÞkEgg,
C2 ¼ ffEkEg; fUzðπÞkEgg, or C2h ¼ ffEkEg;
fUzðπÞkEg; fTUzðπÞkEg; fTkEgg, there is only
one twofold spin rotation UzðπÞ in Gs

NSP, thus, n
which could be either parallel or perpendicular to z.
(When n is perpendicular to z, then groups corre-
sponding to different n belong to the same types up to
conjugate transformations.)

Case 3: For Gs
NSP being the groups that have rotations

of order larger than two, n should be parallel to the
principal axis of Gs

NSP.
Case 4: For Gs

NSP being D2 or D2h, n should be parallel
to one of the twofold spin rotation axes.

Case 5: For Gs
NSP being C2v; n should either be

perpendicular to one mirror or parallel to the twofold
rotation axis.

It is easy to see that for the five cases, the condition
that g−1GNSPg ¼ GNSP for all g ∈ ZK

2 is also satisfied.

Then, we get all of the types of SPGs that can be written as
GNSP × ZK

2 with some types possibly being identical.

b. Step 2

Some types obtained from step 1 are identical because
the operations that implicitly contain T in GNSP could
always be changed to the product of fTUnðπÞkEg with
those operations, for the full group being GNSP × ZK

2 . That
is to say, if we have a spin point group G1

NSP × ZK
2 with

G1
NSP being a nontrivial SPG that could be written as the

form G1
NSP ¼ H þ fTkEgðG1

NSP −HÞ with H being the
subgroup of G1

NSP of order two that does not contain T,
then, we have

G1
NSP ×ZK

2

¼ ½HþfTkEgðG1
NSP−HÞ�× ffEkEg;fTUnðπÞkEgg

¼ ½HþfUnðπÞkEgðG1
NSP−HÞ�×ffEkEg;fTUnðπÞkEgg

¼G2
NSP ×ZK

2 ; ðC1Þ

with G2
NSP containing no T. This implies that GNSP in all

SPGs of the form GNSP × ZK
2 can be chosen such that

the Gs
NSP corresponding to GNSP is formed by pure spin

rotations. Furthermore, it is obvious that two SPGs GA
NSP ×

ZK
2 and GB

NSP × ZK
2 with GA

NSP and GB
NSP being different

types and containing no T should be different types of
SPGs. Thus, we can use all nontrivial SPGs GNSP that have
spin part Gs

NSP being nine axial PGs of pure spin rotation
Cnðn ¼ 1; 2; 3; 4; 6Þ and Dnðn ¼ 2; 3; 4; 6Þ to construct all
types of SPGs of the form GNSP × ZK

2 to avoid multiple
counting of the same type of group. Then, there are four
cases left:

Case 1: For Gs
NSP ¼ C1, n could be random directions

which result in the same types of SPGs.
Case 2: For Gs

NSP ¼ C2 ¼ ffEkEg; fUzðπÞkEgg, n
could be either parallel or perpendicular to the z axis.

Case 3: For Gs
NSP ¼ D2 ¼ ffEkEg; fUxðπÞkEg;

fUyðπÞkEg; fUzðπÞkEgg, n could be parallel to one
of the three twofold rotation axes. These three twofold
rotation axes are equivalent for Gs

NSP, but they are not
necessarily equivalent for the whole nontrivial SPG
GNSP. Thus, the groups which separately have n
parallel to the x, y, and z axes could belong to the
same types of SPGs or different types of SPGs.

Case 4: For Gs
NSP being one of the six groups left

Cnðn ¼ 3; 4; 6Þ and Dnðn ¼ 3; 4; 6Þ, n has to be
parallel to the principal axis z. Thus, we can classify
the types of full SPGs of the form GNSP × ZK

2 into
11 categories shown in Table II. Finally, we get
252 types of crystallographic SPGs of the form
GNSP × ZK

2 . These SPGs are listed in Tables S1–S11
of Supplemental Material [64].
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2. Classification of full SPGs for collinear
spin arrangements

For collinear spin arrangements, we then consider the
form GNSP × ½ZK

2 ⋉ SOð2Þ�.

a. Step 1

We first write SO(2) as SOð2Þ ¼ ffUmðωÞTjjEj0gjω ∈
ð0; 2π�g. Because of the presence of SOð2Þ ¼
ffUmðωÞTjjEj0gjω ∈ ð0; 2π�g, all rotations contained in
Gs

NSP should have rotation axis parallel to m, so that the
condition that h−1GNSPh ¼ GNSP for all h ∈ ZK

2 ⋉ SOð2Þ
is satisfied. Thus, Gs

NSP should have no more than one
rotation axis. Then, the options left for Gs

NSP are 13 PGs:
Cnðn ¼ 1; 2; 3; 4; 6Þ, Cnhðn¼1;2;3;4;6Þ, Snðn ¼ 2; 4; 6Þ.
For Gs

NSP being these PGs, the condition that
g−1½ZK

2 ⋉ SOð2Þ�g ¼ ZK
2 ⋉ SOð2Þ for all g ∈ GNSP is also

satisfied.

b. Step 2

Since m is parallel to the axis of rotation of Gs
NSP, and

SO(2) contains spin rotations along m with arbitrary
rotation angle if there is a spin group of the form
GNSP × ½ZK

2 ⋉ SOð2Þ�, then GNSP could be chosen such
that there is no spin rotation at all in GNSP, similar to the
choice ofGNSP in GNSP × ZK

2 such thatGNSP contains no T,
as discussed in Appendix C1. Therefore, the options left for
Gs

NSP are C1 and S2ð¼ Ci ¼ ZT
2 Þ so that there is no multiple

counting of the same types of full SPGs represented by
GNSP × ½ZK

2 ⋉ SOð2Þ�. The remaining GNSP‘s to be con-
sidered are actually 90 types, including 32 type-I MPGs
and 58 type-II MPGs. Overall, there are 90 crystallographic
SPGs of the form GNSP × ½ZK

2 ⋉ SOð2Þ� shown in Tables
S12–S13 of the Supplemental Material [64].

APPENDIX D: IRREDUCIBLE
COREPRESENTATIONS OF SPIN GROUPS

For a Mn3Sn kagome lattice, we provide the specific
band corepresentations of the little co-groups at different
momenta (K and M). The procedure is as follows: (1) Find
the maximal unitary subgroups (MUSGs) of particular little
co-groups. (2) Get the full list of irreducible representations
of MUSGs from single-valued representations of their
corresponding spatial part. (3) Construct the irreducible
corepresentations of little co-groups from those represen-
tations obtained in (2) based on the method derived by
Wigner [102].
Tables S14 and S16 in the Supplemental Material [64]

list the representation matrices of all irreducible corepre-
sentations of K and M. The correspondences among
the irreducible corepresentations of the spin group, the
single-valued representations of the corresponding non-
magnetic group, and double-valued corepresentations of
the corresponding magnetic group are separately listed in
Tables S15 and S17 in the Supplemental Material [64].
Since the character tables are defined only for unitary
groups, we list the character tables of MUSGs, all sym-
metry operations, and conjugate classes in Tables S18 and
S21 in the Supplemental Material [64]. Since each non-
trivial spin point group is isomorphic to a nonmagnetic or
magnetic point group by neglecting the spin rotations, the
conjugate classes of MUSGs can be directly obtained by
resorting to the conjugate classes of the corresponding
nonmagnetic point group.

APPENDIX E: METHODS OF FIRST-PRINCIPLES
CALCULATIONS

First-principles calculations of SrMnBi2 and CaMnBi2
are conducted within the framework of density-functional
theory [103,104] using the projector-augmented-wave

TABLE II. Classifications of the SPGs of the form GNSP × ZK
2 , with Z

K
2 ≡ ffEkEg; fTUnðπÞkEgg and the corresponding Gs

NSP being
one of the nine groups Cnðn ¼ 1; 2; 3; 4; 6Þ, Dnðn ¼ 2; 3; 4; 6Þ. The principal axes of Gs

NSP, if they exist, are assumed to be along the z
direction.

Gs
NSP Direction of n Number of types

Category I C1 Random 32
Category II C2 Parallel to the z axis 58
Category III C2 Perpendicular to the x axis 58
Category IV C3 Parallel to the z axis 6
Category V C4 Parallel to the z axis 4
Category VI C6 Parallel to the z axis 7
Category VII D2 Parallel to x, y, or z axes (when the three directions lead to identical types) 2
Category VIII D2 Parallel to the x, y, or z axes (when the three directions lead to different types) 62
Category IX D3 Parallel to the z axis 10
Category X D4 Parallel to the z axis 5
Category XI D6 Parallel to the z axis 8

Total number of types: 252
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(PAW) method [105], implemented in the Vienna ab initio
simulation package [106]. Pseudopotentials under the
generalized gradient approximation (GGA) with the
Perdew-Burke-Ernzerhof formalism [107,108] are used.
The ground state is obtained from a self-consistent calcu-
lation with an energy cutoff of 500 eV and 5 × 5 × 5
(7 × 5 × 5) Monkhorst-Pack grid for the symmetrized
primitive cells of SrMnBi2 (CaMnBi2). Because of the
local magnetic moments contributed from 3d electrons in
Mn atoms, the GGAþ U approach within the Dudarev
scheme is applied with U ¼ 3 eV on 3d orbitals of Mn.
To obtain the topological properties of SrMnBi2 and
CaMnBi2, e.g., Dirac points, surface states, Wilson loop,
etc., we construct tight-binding Hamiltonians based on
maximally localized Wannier functions [109,110] of Sr 4d,
Mn 3d, Bi 6p for SrMnBi2 and Ca 3d, Mn 3d, Bi 6p in
CaMnBi2. The iterative Green’s function implemented
in WannierTools package is used for surface states
calculations [111].
In our calculations, the lattice parameters and atomic

positions of SrMnBi2 and CaMnBi2 are chosen from the
experimental values [71] except the z-direction lattice
parameter. To simulate the uniaxial pressure effect, we
set lattice parameter c of SrMnBi2 to be 21.13 Å (rather
than 23.13 Å) to realize the Z2 topological phase in the
subspaces of the Brillouin zone.
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