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ABSTRACT: Nontrivial electronic states are attracting intense
attention in low-dimensional physics. Though chirality has been
identified in charge states with a scalar order parameter, its
intertwining with charge density waves (CDW), film thickness, and
the impact on the electronic behaviors remain less well understood.
Here, using scanning tunneling microscopy, we report a 2 × 2
chiral CDW as well as a strong suppression of the Te-5p hole-band
backscattering in monolayer 1T-TiTe2. These exotic characters
vanish in bilayer TiTe2 in a non-CDW state. Theoretical
calculations prove that chirality comes from a helical stacking of
the triple-q CDW components and, therefore, can persist at the
two-dimensional limit. Furthermore, the chirality renders the Te-
5p bands with an unconventional orbital texture that prohibits
electron backscattering. Our study establishes TiTe2 as a promising playground for manipulating the chiral ground states at the
monolayer limit and provides a novel path to engineer electronic properties from an orbital degree.
KEYWORDS: chiral charge density wave, monolayer TiTe2, backscattering suppression, orbital texture

Manipulating and engineering the nontrivial order of
charge or spin states at low-dimension, such as chirality,

helicity, etc., provide newfangled paths to realize novel
quantum phenomena and next-generation applications. Thanks
to the vector nature, spin-ordered or spin-momentum locked
states are prone to exhibit chiral or helical patterns.1−4

However, a charge ordered state characterized by a scalar order
parameter rarely manifests chiral or helical features. Recently,
such a state, the chiral CDW, was experimentally identified in
certain layered transition-metal dichalcogenides (TMDCs),5−8

unconventional cuprate superconductors,9 Weyl semimetals,10

and kagome materials.11,12 The chiral CDW phase as a
spontaneous mirror symmetry breaking usually underlies the
intertwining among orbital order, electron correlation, and
nontrivial band topology. Extensive efforts have been dedicated
to directly image and manipulate the chiral CDW state,5−17

enabling the emergence of chiral superconductivity,13,14

ferroelectricity15 and nonlinear optical activity.16,17

To date, the microscopic mechanism of chiral CDW has not
been fully understood. Unlike a conventional CDW described
by one or multiple charge modulation wave vectors q with the
same amplitude and phase, the chiral CDW is often proposed
to manifest a unique helical stacking of inequivalent q vectors
in a CDW unit cell (known as “triple-q” theory), generating
clockwise or anticlockwise rotation of their intensity and thus
breaking spatial inversion symmetry with an axial vector,18,19 In

both 1T-TiSe2 and kagome materials,19,20 a sequential phase
difference between the triple-q CDW vectors is expected to
drive the chiral charge modulations along the layer stacking
direction, and then supports a chiral CDW phase in the bulk or
multilayers. To clarify the interplay between chirality and the
collective CDW mode, it is, therefore, crucial to engineer and
investigate the chiral CDW state at the two-dimensional (2D)
limit.

Recently, a commensurate 2 × 2 CDW has been observed in
monolayer TiTe2, while no CDW instability emerges in its bulk
and multilayer form.21−28 As an isostructural sister compound
to the first discovered chiral-CDW material 1T-TiSe2, TiTe2
serves as a potential platform to study chiral CDW at the 2D
limit.19 Furthermore, if chirality exists, the striking contrast
between TiTe2 monolayer and multilayers enables a
comparative study on the chirality-induced physical effect,
such as the electronic scatterings and band topology that
should be altered by the chirality character of the
corresponding wave function.13,29
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Here, by high-resolution scanning tunneling microscopy/
spectroscopy (STM/STS) measurements, we demonstrate the
chiral nature of the CDW phase in monolayer TiTe2, which is
characteristic of distinct triple-q intensities and mirrored chiral
domains. This is excellent consistency with our density
functional theory (DFT) calculations based on an extended
triple-q theory. Furthermore, we visualize a strong suppression
of electron backscattering of Te-5p hole-bands in the chiral
CDW state of monolayer TiTe2 from energy-resolved and
layer-dependent quasi-particle interference (QPI) patterns.
With the assistance of theoretical calculations, we demonstrate
that the backscattering suppression stems from a chirality-
driven unconventional orbital texture of electron wave
functions, analogous to the orbital-momentum locking in
DNA-type chiral molecules in the chiral CDW phase.30 Our
findings open a window for understanding the chiral nature of
electron charge at the 2D limit and release the possibility for
developing chiral CDW based electronic devices from an
orbital degree of freedom.
Our experiments have been carried out on crystalline 1T-

TiTe2 thin films prepared by molecular beam epitaxy (MBE)
on bilayer-graphene-terminated 6H-SiC (0001) substrates, as
sketched in Figure 1a (see Methods in the Supporting
Information for details). In a high-temperature normal state,
the TiTe2 crystal structure with the D3d point group symmetry
consists of Te−Ti−Te sandwiched sheets bonded via weak van
der Waals forces, whereas within one Te−Ti−Te triple layer
(TL) the hexagonal close-packed Ti atoms are octahedrally
coordinated by six Te atoms. In our work, high-quality

monolayer (1 TL) and bilayer (2 TL) TiTe2 films with few
nonstoichiometric defects have been successfully grown and
identified, although self-intercalated Ti1+xTe2 multilayers
invariably develop even under the extremely Te-rich growth
conditions (Figures S1 and S2).

Figure 1b typifies the atomically resolved STM topographies
of 1 TL and 2 TL TiTe2 films, respectively, a direct
comparison of which reveals the emergence of a 2 × 2
CDW order in 1 TL TiTe2 and its absence in 2 TL TiTe2,
consistent with recent reports.21,22 The CDW ground state of 1
TL TiTe2 is further corroborated by imaging the contrast
reversal of the dI/dV maps at opposite bias polarities (Figure
1c,d), which resemble closely those in other CDW materials
1T-TiSe2 and 1T-ZrSe2.

31,32 For bilayer or multilayer films,
though CDW is absent in stoichiometric TiTe2, a 2 × 2
superstructure exists ubiquitously in Ti1+xTe2 due to the
ordering of intercalated Ti (Figure S2), which has ever been
controversially ascribed to the CDW order.33,34

In the fast Fourier-transform (FFT) image of STM
topography, the CDW modulation contributes to additional
scattering spots (qCDW) along the crystallographic directions
(qBragg) at qCDW = (1/λ)qBragg, where λ is the CDW periodicity.
As reported previously, qCDW intensity correlates to the
amplitude of the CDW modulation and would increase in a
rotational way if chirality further develops.6−8,10−13 The CDW
in 1 TL of TiTe2 fits this case perfectly, as demonstrated in
Figure 2a. For the orange- and green-enclosed regions (Figure
2b,c), the 2 × 2 CDW spots increase in intensity clockwise (q1
→ q2 → q3) and anticlockwise (q1 → q3 → q2), respectively.
The STM topography taken at the opposite bias polarity
within this area reveals the same chirality (Figure S3). The
robustness of the CDW chirality in 1 TL TiTe2 against the
sample bias is further confirmed in another region (Figure S4).

The chirality induces an anisotropy of the triple-q CDW
vectors, lowering the 3-fold symmetry of the triangular lattice
into a 2-fold one, accompanied by a mirror symmetry breaking.
However, in contrast to kagome superconductor KV3Sb5,

11−13

time-reversal symmetry is preserved in 1 TL TiTe2 because the
CDW chirality is essentially unchanged with the orientation of
the c-axis magnetic field (Figure S5). We also note the chiral
CDW persists robustly in 1 TL TiTe2 even when the charge
modulation becomes substantially weak as a spatial inhomo-
geneity or thermal fluctuations at 78 K, as shown in Figure 2b
(yellow-enclosed region) and Figure S6. Altogether, our
experiments demonstrate a robust chiral CDW state in the
monolayer limit of 1T-TiTe2. This is in sharp contrast to its
sister compound 1T-TiSe2, which is the first discovered crystal
hosting a chiral-CDW, yet not in the 2D limit.5,35,36

To give a microscopic understanding of the nature of chiral
CDW in 1 TL TiTe2, we performed first-principles calculations
on the electronic structure and phonon dispersion of TiTe2
(see Methods). Our results first show a signature of soften
phonon mode in 1 TL TiTe2 other than 2 TL or multilayers
(Figure 3a, left and middle panels) considering a pristine
structure of TiTe2 without any strain (ε = 0). When an
extension strain is switched on (Figure 3a, right panel), the
phonon mode at the M point further softens and consequently
favors a commensurate 2 × 2 CDW state in 1 TL TiTe2. In
Figure 3b, one can see that a minor strain of ε ∼ 3% is enough
to drive the CDW transition in 1 TL TiTe2, but a larger lattice
extension is required to induce the same CDW transition in 2
TL or bulk TiTe2. In our films, strain could stem from the
TiTe2/graphene heterojunction interface because of the lattice

Figure 1. CDW in 1 TL TiTe2. (a) Schematic side view from [100]
direction of epitaxial 1T-TiTe2 thin films on bilayer-graphene-
terminated 6H-SiC(0001) substrate. (b) Typical STM topographies
(5 nm × 10 nm) of 1 TL (left) and 2 TL (right) TiTe2. Set point: V =
50 mV, I = 1 nA (1 TL); V = 100 mV, I = 400 pA (2 TL). The white
rhombi mark the 2 × 2 and 1 × 1 unit cell, respectively. (c, d) Filled-
and empty-state dI/dV maps (4 nm × 4 nm) measured
simultaneously in 1 TL TiTe2. The opaque and semitransparent
green spheres mark the Teup and Tedown atoms, respectively, while the
purple spheres and dashed hexagons denote the Te atoms and CDW
unit cells.
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mismatch and should be strongest in the monolayer limit,
naturally explaining the emergent CDW in 1 TL TiTe2.
Theoretically, it should be noted that the three imaginary

phonon modes at M will give rise to three anisotropic q-vectors
(q1(0, 0.5), q2(−0.5, 0), q3(0.5, −0.5)) and corresponding
displacement vectors d⃗q,i, here i = 1, 2, 3 denotes the atom
index in a 2 × 2 supercell and q ∈ {q1, q2, q3}. A simple
superposition of these displacement vectors d⃗i = ∑q=q d1,2,3

d⃗q,i
gives a triple-q combined distorted structure,37 as sketched in
Figure 3c (left panel). Such a 2 × 2 supercell structure
generates an achiral CDW pattern because of the preserved C3
symmetry together with the inversion symmetry.
To reproduce the chiral CDW theoretically, we broke the C3

symmetry by assigning the three imaginary phonon modes at
M to each Teup−Ti−Tedown sublayer,19 as shown in the right
panel of Figure 3c. This is achieved by adding an additional
relative phase φl ∈ {0, ±2π/3} to d⃗i, but keeping the same
ampilitude within each sublayer, namely, d⃗i = ∑q=q d1,2,3

d⃗q,i sin(φl

+ φq + φ0), here φl is the layer-dependent phase, φq is the

relative phase between three q vectors, and φ0 = π/2 is the
initial phase. Following the above improvements, we computed
the supercell structure of 1 TL TiTe2 in the chiral CDW phase
with a strain of ε ∼ 6% (to stabilize the CDW state) and the
result is shown in Figure 3d. By employing a slightly distorted
structure as an initial input, the atomic displacements of Ti and
Te atoms are relaxed to be approximately ΔTi ∼ 0.06 Å and
ΔTe ∼ 0.006 Å in 1 TL TiTe2. Besides, our calculations reveal
that the top and bottom Te atoms hold the opposite phases,
which means their movements in the opposite direction. The
subtle atomic displacements are hardly resolved in our STM
measurements within the experimental uncertainty and needs
further clarification by other techniques.

From the structure in Figure 3d, we calculate the partial
charge density at varied energies (Figure S7). The broken C3
symmetry enables three distinctive CDW wave vectors (q1, q2,
q3) and their stacking sequence in the Teup−Ti−Tedown triple-
layer generates, for instance, a clockwise chiral CDW pattern in
Figure 3e, consistent with our STM measurements. Our
calculations not only associate the cyclic intensity in STM with

Figure 2. CDW chirality. (a) STM topography (40 nm × 20 nm, V = 50 mV, I = 1 nA) involving three chiral CDW domains as illustrated by green,
orange, and yellow squares. (b, c) 2D and 3D plots of the FFT images transformed from the enclosed areas by the yellow (left), orange (middle),
and green (right) squares in a, with CDW intensity increasing clockwise or anticlockwise (arrowed circles). q1,2,3 and qBargg denote the CDW and
Bragg peaks, while the six inner peaks (q6×6) stem from the 6 × 6 superstructure of underlying substrates.
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a chiral CDW but also favor that the chiral CDW in 1 TL
TiTe2 could originate purely from the superposition of soft
phonon modes and thus can persist at the monolayer limit.
The distinct behavior of 1 TL (chiral CDW) and 2 TL (non-

CDW) TiTe2 enables us a comparative study on the impacts of
chiral CDW on the electronic scatterings and nontrivial band
topology. Figure 4a,b shows the dI/dV(r, E) maps of 1 TL and
2 TL TiTe2 in a 40 nm-square field of view with varied
energies. One can clearly see the QPI patterns with a
periodicity of 2−4 nm in the entire surface of 2 TL TiTe2
regardless of the energy. However, in the 1 TL film, these QPI
patterns are strongly suppressed at high-energies (E ≥ −0.2
eV) and faintly emerge only around native defects with
decreasing energy (E < −0.2 eV). Fourier transform of the dI/
dV maps into the momentum space allows direct access to the
scattering wave vectors q. Figure 4c,d displays the obtained
FFT images at representative energies of −0.1 eV for 1 and 2
TL TiTe2, respectively (see Figure S8 for additional FFT
images under other energies). These QPI patterns in 2 TL
TiTe2 contribute to three ring-like scattering features (one
inner ring qh1 and two outer hexagonally warped rings qh2 and
qh3) at the center of the Brillouin zone, which vanish
completely in 1 TL TiTe2.
Band topology is a fundamental premise to understand the

QPI patterns. As reported previously, the energy bands of
TiTe2 near EF are composed of a Ti 3d-derived electron band
(γ) and two Te 5p-derived hole bands (inner α and outer
β).21−28 The γ band lies just below EF, thus only the α and β
hole bands participate in the constant energy contour (CEC)
when E ≤ −0.1 eV, contributing two-hole pockets at Γ as

sketched in Figure 4e inset. The scattering features qh1, qh2, and
qh3 can be easily assigned to the intrapocket scatterings of α
(qh1) and β (qh3) bands as well as the interpocket scattering
between them (qh2). Such assignment is further confirmed by
the calculated dispersions of α and β bands (Figure 4e) based
on the energy-dependent FFT images (some typical images are
shown in Figure S8), in which the scattering geometries qh1 =
2kα and qh3 = 2kβ are considered. In our analysis, we determine
the q vector directly from the peak position in the FFT
intensity linecut but neglect its error bar associated with the
peak width for simplicity. They consist well with that from the
first-principles calculations and ARPES measurements.21−28

Having clarified the origin of qh1, qh2, and qh3, we realize that
the missing of standing waves in 1 TL TiTe2 signifies a strong
suppression or forbidden of the hole-band electron back-
scattering. This suppression, together with the STM tunneling
matrix effect, results in a layer-selective band scattering of the
Ti-3d derived electron band (γ) and Te-5p derived hole bands
(α, β) at EF when the γ band comes into play (Figure S8c).
Considering that previous ARPES measurements cannot
observe any obvious spin splitting of the Te-5p bands albeit
violated inversion symmetry in the chiral CDW state,21 the
absence or suppression of qh1, qh2, qh3 in 1 TL TiTe2 cannot be
simply attributed to a helical spin texture. Besides, we further
state that the backscattering suppression is not an interfacial
effect from the underlying substrate. Though the interfacial
interaction can slightly renormalize the energy band,22 the
basic band structure of the electron- and hole-bands remains
robust and thus their backscatterings are expected to maintain.

Figure 3. Calculated CDW instability and its chirality. (a) Phonon dispersion of 1 TL and 2 TL TiTe2 under different tensile strains ε as labeled.
(b) The lowest phonon frequency at M as a function of the film thickness and ε. (c) Schematic representation of achiral and chiral CDW. (d)
Schematic of the crystal structure of 1 TL of TiTe2 in the chiral CDW phase. The black arrows denote the atom displacements. (e) Simulated FFT
image of a chiral CDW domain (clockwise) considering a triple-q CDW and a relevative phase of 2π/3.
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Instead, by first-principles calculations, we demonstrate the
chirality-driven unusual orbital polarization/texture of α and β
bands as the microscopic origin for the suppression of their
scatterings. In sharp contrast to the achiral CDW (Figure 5a,b)
with negligible orbital polarization Lz, because of the broken
inversion symmetry and preserved time-reversal symmetry (
) in the chiral CDW state, a pronounced Lz of Te-5p bands can
exist except for the -invariant points, exhibiting opposite
signs at the k and −k wavevectors. As shown in Figure 5c,d, the
backscattering between states with opposite k vectors carrying
opposite angular momenta is thus prohibited since

k kU, 1 , 1+ | | = k kU, 1 , 1| | + *+ =
k kU, 1 , 1+ | | = 0, where and U respectively denote

the time-reversal operator and time-reversal invariant operator,
and ±1 denotes the angular momentum. Because different
chiral CDW domains with opposite chirality in 1 TL TiTe2
display an inverted orbital polarization in k-space, they
contribute an equivalent QPI pattern with a universal
suppression of hole-band backscattering.
Figure 5c,d also illustrates a much larger orbital polarization

of the inner hole-band than that of the outer one. Considering
the magnitude of the Lz difference, this would result in a
stronger suppression of the scattering qh1, followed by qh3 and

then qh2. This prediction qualitatively consists with our
experimental observations shown in Figure S6a (e.g., E =
−0.2 eV), where qh3 begins to show but qh1 is still invisible.
Besides, the orbital polarization of both hole-bands weakens
with decreasing energy, consistent with the emergent QPI
features around impurities in the FFT images. Overall, our
theoretical results are in good agreement with the experimental
observations of the suppression of hole-pocket scatterings,
indicating the chirality-driven unconventional orbital texture in
the chiral CDW phase.

It is worth mentioning that a momentum-dependent
hybridization effect in consequence of the distinct orbital
characters of the inner and outer hole bands27,28 also helps
suppress the hole-band backscattering. Here, we adopt a low-
energy effective model (see Methods) to capture the Te-5p
states derived snowflake QPI pattern at the BZ center of EF
(Figure S8). Figure 5e displays the computed Fermi surface
contour of the hole bands without the CDW transition. In this
normal state (T > TCDW), the two hole-bands from Te-5p
orbitals contribute three hole-pocket scatterings as anticipated
(Figure 5f). As the CDW distortion is turned on (T < TCDW),
the backfolded Ti-3d electron-bands strongly hybridize to the
outer valence bands, modifying the band structure (Figure S9)

Figure 4. Suppressed hole-band scatterings in 1 TL TiTe2. (a, b) Energy-dependent dI/dV maps (40 nm × 40 nm) measured on 1 TL and 2 TL
TiTe2, respectively. (c, d) FFT images at E = −0.1 eV of 1 TL and 2 TL TiTe2. The white hexagons sketch out the unfolded BZ of TiTe2 in the kz =
0 plane. The three wave vectors qh1, qh2, and qh3 mark the scatterings from α and β bands. (e) Energy dispersions of α (circles), β (triangles), and γ
(squares) bands. The bands for the 1 and 2 TL TiTe2 are colored red and blue, respectively. The γ band of 1 TL TiTe2 is symmetrized with respect
to the M point, and the red line is a parabolic fit to it. Inset shows the CEC of TiTe2 at E = −0.1 eV, showing α and β bands and their scatterings.
The dashed ellipses sketch the γ electron pocket which vanishes when E = −0.1 eV but appears in CEC at E = EF.
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and Fermi surface contour dramatically (Figure 5g). A bunch
of newly formed small pockets combined with enhanced Ti-d
and Te-p orbital charge transfer in the CDW state give rise to a
significant quench of the original hole pocket scattering, as
revealed by the joint density of states (JDOS) (Figure 5h).
Such a strong band-warping effect is not captured by DFT. It
should be noted that this effect could occur only within the
hybridization gap, which is estimated to be smaller than 100
meV in the low-energy dI/dV spectra (Figure S10). Such a
small band hybridization gap is insufficient to explain the
observed backscattering suppression at higher energy, such as
E = −0.2 eV. After invoking chirality, both the backscattering
suppression and its energy-range (from EF to −0.4 eV) can be
well explained by the chirality induced orbital polarization
Our findings report the first direct visualization of chiral

CDW in the monolayer limit of TiTe2, in which the
dimensionality, i.e., the ultrathin thickness, still plays a crucial
role in the formation of chirality. The spontaneously formed
chiral CDW state in monolayer TiTe2 arises from a relative
phase difference between the triple-q CDW vectors embedded
in each atomic layer, which is in sharp contrast to the
unparalleled qBragg and qCDW induced chiral Fermi surface, such
as in TaS2.

29 Such a helix charge order in monolayer TiTe2 is
thus expected to enable plentiful physical responses such as
chirality-induced spin selectivity30 and exotic circular dichro-
ism,38 as exemplified by a recent work on indium nanowires.39

Furthermore, our work unveils an underlying relationship
between the suppression of Fermi-pocket scatterings and the
chirality-driven orbital texture, indicating that the orbital
angular momentum plays a significant role in these
phenomena. Unlike Rashba spin textures in topological
insulators,40,41 we provide a novel insight that the back-
scattering of low-energy electrons that determines the
transport behavior can be unusually dominated by an orbital

degree of freedom. Spectroscopic visualization of the electronic
scattering processes offers a direct way to explore such an
orbital polarization effect. Considering the CDW distortion
and substrate effect, it is undeniable that the inclusion of spin−
orbit coupling may quench the polarization at certain k points,
which requires further circular dichroism measurements or
other investigations. In this regard, the chiral CDW order can
be desirably tuned and optimized by a range of manners such
as doping,23 pressure, and Moire ́ pattern25 to broaden the
potential applications of the chiraltronics.
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