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Chiral Dirac Fermion in a Collinear Antiferromagnet
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In a Dirac semimetal, the massless Dirac fermion has zero chirality, leading to surface states connected

adiabatically to a topologically trivial surface state as well as vanishing anomalous Hall effect. Recently, it

is predicted that in the nonrelativistic limit of certain collinear antiferromagnets, there exists a type of chiral

“Dirac-like” fermion, whose dispersion manifests four-fold degenerate crossing points formed by spin-degenerate

linear bands, with topologically protected Fermi arcs. Such an unconventional chiral fermion, protected by a

hidden 𝑆𝑈(2) symmetry in the hierarchy of an enhanced crystallographic group, namely spin space group, is

not experimentally verified yet. Here, by angle-resolved photoemission spectroscopy measurements, we reveal

the surface origin of the electron pocket at the Fermi surface in collinear antiferromagnet CoNb3S6. Combining

with neutron diffraction and first-principles calculations, we suggest a multidomain collinear antiferromagnetic

configuration, rendering the existence of the Fermi-arc surface states induced by chiral Dirac-like fermions. Our

work provides spectral evidence of the chiral Dirac-like fermion caused by particular spin symmetry in CoNb3S6,

paving an avenue for exploring new emergent phenomena in antiferromagnets with unconventional quasiparticle

excitations.

DOI: 10.1088/0256-307X/40/12/126101

The Dirac fields obey the famous Dirac equation

(−𝑖𝛼𝑖𝜕𝑖+𝑚𝛽)𝜓(𝑥) = 𝑖𝜕0𝜓(𝑥), where 𝛼
𝑖 = 𝜏𝑥⊗𝜎𝑖 and 𝛽 =

𝜏𝑧 ⊗ 𝜎0. With the operators furnishing a four-dimensional

irreducible representation of the Lorentz group, the Dirac

field can be decomposed into two two-component Weyl

fields with opposite chiralities in the limit of zero mass.

There are several manifestations of the Dirac equation in

condensed matter systems, such as the quasiparticle dis-

persion in graphene, [1] topological insulators, [2–4] Dirac

semimetals, [5–9] Weyl semimetals, [10–12] and 𝑑-wave high-

temperature superconductors. [13] In Dirac semimetals, the

chirality of a massless Dirac fermion must be zero be-

cause the space-time 𝑃𝑇 -symmetry (𝑃 and 𝑇 denote space

inversion and time reversal, respectively) forces the two

branches of each doubly degenerate band to have opposite

Berry curvatures [Fig. 1(a)]. Hence, the Fermi arc surface

states connecting two Dirac points in a Dirac semimetal

are generally not topologically protected, unlike the Fermi

arc connecting chiral Weyl fermions. [14] On the other

hand, chiral fermions with charge-2 chirality have been

predicted and measured in materials such as CoSi, [15–19]

of which the band structure manifests four-fold degeneracy
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node protected by nonsymmorphic symmetry and nonde-

generate bands off the high-symmetry point [Fig. 1(a)].

Recently, it is predicted that two Weyl fields with

the same chirality couldbe connected together to form a

“Dirac-like” fermion, [20] which manifests four-fold degen-

erate nodes formed by two doubly degenerate bands while

carrying Chern numbers 𝐶 = ±2 [Fig. 1(a)]. Interest-

ingly, the symmetry that connects the two Weyl fields is a

counterpart of isospin 𝑆𝑈(2) symmetry that relates a pro-

ton and a neutron in high-energy physics (see Section S1

of the Supplementary Materials). In solid state physics,

such continuous symmetry does not exist in the frame-

work of conventional (magnetic) crystallographic groups.

Instead, the generators of such hidden 𝑆𝑈(2) symmetry

belong to spin group, which involves partially decoupled

spatial and spin operations, [21–23] providing a symmetry

description of magnetic materials with local moments in

the non-relativistic limit. Despite several predicted ma-

terial candidates, such chiral Dirac-like fermions is either

not experimentally observed in quantum materials, or as-

sociated with any emergent phenomena.

In this work, we provide experimental evidence of

the existence of such exotic fermions in an antiferro-

magnet CoNb3S6, which caught great interest due to

its surprisingly large anomalous Hall effect (AHE). [24–29]

By angle-resolved photoemission spectroscopy (ARPES)

measurements, we reveal that the electron pockets

of CoNb3S6 at the Fermi surface exhibit a two-

dimensional nature. Combining with neutron diffraction

and first-principles calculations, we suggest a multido-

main collinear antiferromagnetic (AFM) configuration,

rendering the existence of the Fermi-arc surface states

induced by chiral Dirac-like fermions. In addition, we

discuss the effects of the chiral Dirac-like fermions as

an essential element of the unexpected large anomalous

Hall effect.
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Fig. 1. Structure of the chiral Dirac-like fermion material candidate CoNb3S6. (a) Schematics of charge-1 Weyl

fermion as a building block to compose charge-2 chiral fermion, Dirac fermion, and charge-2 chiral Dirac-like fermion.

(b) Single-crystal neutron diffraction image in the (𝐻,𝐾,𝐿 = 1) and (𝐻,𝐾,𝐿 = 0) scattering plane measured at

3K. The reflections marked by blue circles, stars and squares are from three different magnetic domains indexed

by three equivalent magnetic propagation vectors, 𝑞𝑚1 = (0.5, 0, 0), 𝑞𝑚2 = (0, 0.5, 0), and 𝑞𝑚3 = (0.5, −0.5, 0),

respectively. (c) Powder neutron diffraction pattern with Rietveld refinement fit at 10K. (d) The AFM magnetic

structure of CoNb3S6 revealed by the Rietveld refinement of powder neutron diffraction patterns. Note that due to

the effect of the six magnetic 𝑀 domains induced by the site point group 𝐷3 of Co, the specific moment direction

in the 𝑎𝑏 plane cannot be exactly determined. (e) Density functional theory (DFT)-calculated band structure of

CoNb3S6 with the experimentally measured AFM order without spin-orbit coupling (SOC). Yellow circles indicate

the positions of the chiral Dirac points.

Magnetic Structure of CoNb3S6. Our magnetization

measurements suggest a phase transition around 𝑇 =

28.3K, with most of the moments ordered antiferromag-

netically in the 𝑎𝑏 plane, and a weak ferromagnetic com-

ponent along the 𝑐 axis. This observation is consistent

with the previous reports. [24–27] The detailed magnetiza-

tion data is presented in Sections S2 and S3 of the Sup-

plementary Materials. Figure 1(b) presents the single-

crystal neutron diffraction patterns of CoNb3S6 in the

(𝐻,𝐾, 1) and (𝐻,𝐾, 0) scattering plane at 3K. The mag-

netic peaks marked by the blue circles, stars and squares

can be indexed by three different magnetic wave vectors

(0.5, 0, 0), (0, 0.5, 0) and (0.5, −0.5, 0), respectively, in-

dicating three types of magnetic domains rotated 120∘

from each other. Due to the limited magnetic reflec-

tions of the single-crystal diffraction experiment, an ad-

ditional powder neutron diffraction experiment was per-

formed at 10K< 𝑇N to determine the magnetic structure

of CoNb3S6, as shown in Fig. 1(c). Consistent with the

single-crystal diffraction results, extra weak magnetic re-

flections are observed and indexed by the same magnetic

propagation vector 𝑞𝑚 = (0.5, 0, 0), (0, 0.5, 0) or (0.5,

−0.5, 0). Representation analysis was applied to analyze

the possible magnetic structures. [30] For the space group
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𝑃6322 with Co site at (1/3, 2/3, 1/4) and 𝑞𝑚 = (0.5, 0,

0), the spin configuration can be described by four differ-

ent irreducible representations. By Rietveld refinement,

we found that 𝛤4 could give the best fit with 𝑅p = 2.88

and 𝑅wp = 3.68 for powder neutron diffraction data. The

resulting magnetic moment on the site (1/3, 2/3, 1/4)

are antiferromagnetically coupled to the site (2/3, 1/3,

3/4). As schematically presented in Fig. 1(d), the refined

magnetic structure of CoNb3S6 shows a collinear magnetic

configuration. [31] For the intralayer, the local moments on

the neighboring Co sites are antiferromagnetically coupled

along the 𝑎 axis, but ferromagnetically coupled along the

𝑏 axis. By the refinement, we find that the Co moments

are lying in the 𝑎𝑏 plane and the ordered moment of Co2+

is about 1.64(7)𝜇B/Co. However, due to the 𝐷3 site point

group of Co2+ ions, the in-plane spin orientation cannot

be distinguished. The detailed analysis of the magnetic

structure can be found in Section S2 of the Supplemen-

tary Materials.

Emergence of Fermi-Arc Surface States. We perform

DFT band structure calculation of bulk CoNb3S6 based

on the measured AFM order, as shown in Fig. 1(e). Since

the bands of interest are dominated by Co 3𝑑 orbitals with

weak SOC, we ignore SOC for the calculations that com-

pare with the ARPES measurement and leave the SOC

effects in later discussions. There are two main features in

the calculated band structure: Firstly, although 𝑃𝑇 sym-

metry is absent, the energy bands of any momenta are dou-

bly degenerate. Such degeneracy is unique in magnetic ma-

terials without SOC in that it is protected by the so-called

spin space group symmetry, which involves independent

spin and spatial rotations compared with the conventional

magnetic space group. [21,23] In CoNb3S6, the collinear

AFM order guarantees 𝑈(1) symmetry along the 𝑥 axis

{𝑈𝑥(𝜃)||𝐸|0} and a 180∘ pure spin rotation along the 𝑧 axis

followed by a fractional translation {𝑈𝑧(𝜋)||𝐸|𝜏(𝑎+𝑏)/2},
ensuring doubly degenerate bands throughout the Bril-

louin zone (see Section S4.1 of the Supplementary Materi-

als). Secondly, the band crossings are all four-fold degen-

erate Dirac-like points, which could appear either at arbi-

trary momenta or high-symmetry lines. There are multi-

ple four-fold Dirac-like points around the calculated Fermi

level and some located along 𝛤–𝑋 and 𝛤–𝑌 lines (∼ 0.4 eV

above the Fermi level). Interestingly, unlike the degeneracy

protected by 𝑃𝑇 , all the Dirac-like points manifest Chern

numbers 𝐶 = ±2 rather than 0, manifesting robust Fermi-

arc surface states (see Section S4.2 of the Supplementary

Materials).
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Fig. 2. Band structure and its 𝑘𝑧 dependence of CoNb3S6 measured by ARPES at 𝑇 = 8K. (a) Three-dimensional

bulk and 2D surface Brillouin zone of CoNb3S6. (b) Band spectrum along high-symmetry lines 𝛤–�̄�–�̄�–𝛤 . The

hole pocket that is centered at 𝛤 and crosses Fermi level is labeled as 𝛼. The electron pocket centered at �̄� is

labeled as 𝛽. (c) Spectral intensity along 𝑘𝑧 in the direction taken with photon energies ranging from 60 to 165 eV,

superposed with periodic dispersion (white dotted lines). (d) Fermi surface in 𝑘𝑥–𝑘𝑧 plane obtained by photon-

energy dependent ARPES measurement. The white dashed lines in (d) indicate the 𝑘𝑧 independence of 𝛽 band. (e)

Band spectra along �̄�–𝛤–�̄� from various 𝑘𝑧 values. White dashed lines indicate the same 𝑘F of 𝛽 at different 𝑘𝑧 .

We next perform ARPES measurements on the nat-

ural cleavage plane (𝑎𝑏 plane) to directly visualize the

band structure of CoNb3S6. Although the AFM order en-

larges the unit cell leading to a rectangular Brillouin zone

(BZ), the ARPES measured spectral intensity exhibits a

hexagonal symmetry matching the nonmagnetic 3D BZ

[Fig. 2(a)]. This comes from the fact that ARPES spec-

tral intensity averages photoelectrons excited from energy

degenerate AFM domains with three different orientations

as revealed by the neutron diffraction results. Thus, we

use the nonmagnetic 3D BZ to describe the ARPES data

measured at 𝑇 = 8K, i.e., the AFM phase. The general

band structure along the high-symmetry line 𝛤–�̄�–�̄�–𝛤

is shown in Fig. 2(b). Close to the Fermi level, the ARPES

spectra is dominated by a hole-like, highly dispersed band

(labeled as 𝛼) centered at 𝛤 and an electron-like, shal-

low band (labeled as 𝛽) centered at �̄�. To define the

precise position of high-symmetry points in the 3D BZ

and uncover the 𝑘𝑧 dependence of these bands, we per-

form photon-energy dependent measurements (ℎ𝜈 = 60–

165 eV), with the momentum cut fixed along �̄�–𝛤–�̄� di-

rection [Figs. 2(d) and 2(e)]. As shown in Fig. 2(d) by
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the Fermi surface mapping in 𝑘𝑧–𝑘𝑥 plane, both 𝛼 and

𝛽 bands show no observable dispersion with 𝑘𝑧, despite

some intensity change, consistent with its layered lattice

structure. The 𝑘𝑧 periodicity can only be observed if we

choose the energy window ∼ 1 eV below the Fermi level

and focus on the spectral intensity variation from 𝛤 . As

shown in Fig. 2(c), broad but alternating electron-like and

hole-like features can be distinguished as indicated by the

superposed white dotted lines. It is noted that the 𝑘𝑧
dispersion shows a 4𝜋/𝑐 periodicity with lattice constant

𝑐 = 11.886 Å, because each nonmagnetic unit cell contains

two –NbS2–Co1/3 units.

The 2D nature of 𝛼 and 𝛽 bands are further elabo-

rated by examining their dispersion at different 𝑘𝑧 values.

As shown in Fig. 2(e), we plot �̄�–𝛤–�̄� cuts from five ran-

domly selected 𝑘𝑧 values, all of them show almost the same

dispersion for both 𝛼 and 𝛽 bands. In particular, the Fermi

momentum (𝑘F) of 𝛽 band is indicated by the white dashed

lines, and it remains constant with 𝑘𝑧, strongly demon-

strating its 2D nature. Previously, this electron pocket

was attributed to the bulk electronic structure and are

dominated by Co atoms, [28,29] evidenced by the 𝑘𝑧 disper-

sion observed by ARPES using soft x-ray photons. [27] Here

we use ultraviolet photons with much higher energy and

momentum resolution to clearly prove its 𝑘𝑧 independence

and will discuss its surface origin in the following.
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Fig. 3. Fermi-arc surface states of CoNb3S6. [(a), (d)] ARPES spectra taken with 120 eV photons along the

�̄�–𝛤–�̄� and �̄�–𝛤–�̄� , respectively. [(b), (c), (e), (f)] Projection of DFT calculated bulk and surface bands along

�̄�–𝑌 –𝛤–𝑌 –�̄� and �̄�–𝛤–�̄� , respectively. (g) Geometric relation between nonmagnetic surface BZ (SBZ, black solid

lines) and antiferromagnetic BZ (MBZ, colored solid lines). (h) ARPES Fermi surface mapping with SBZ plotted.

(i) Left: DFT calculated Fermi surfaces with only surface state spectral weight for the three equivalent domains.

Right: superposition of the three differently orientated Fermi surfaces to construct the experimental Fermi surface

with sixfold rotation symmetry.

We then compare the ARPES spectra to the projec-

tion of DFT calculated bulk and surface bands to fully

demonstrate the surface origin of 𝛽 band and its associ-

ation with the predicted chiral Dirac-like fermions. Since

the structure of CoNb3S6 is indeed stacking NbS2 layers

with a Co-layer intercalation, the calculated surface states

of NbS2 termination are adopted for comparison. We find

that almost all the ARPES measured low-energy band fea-

tures [including 𝛼 and 𝛽 bands, Figs. 3(a) and 3(d)] can be

reproduced by DFT projected surface [Figs. 3(b) and 3(e)]

and bulk calculations [Figs. 3(c) and 3(f)]. Figure 3(a)

shows the ARPES spectra along �̄�–𝛤–�̄�. The 𝛽 band

centered at �̄� comes from an electron pocket with its band

bottom slightly below the Fermi level. Such a feature can

be well reproduced by the DFT-calculated surface states

as shown in Fig. 3(b). The ARPES spectra along �̄�–𝛤–�̄�

also reveals weak spectral weight centered at �̄� [Fig. 3(d)].

We attribute this feature to the tail of the 𝛽 surface band

which locates slightly above the Fermi level at �̄� as shown

in Fig. 3(e). Such a tail is also visible for the 𝛽 band at �̄�,

likely from the incoherent electron scattering off other en-

tities such as disorders, bosons, and so on. [32] In Section

S4.2 of the Supplementary Materials, orbital projection

analysis shows that 𝛽 band is dominated by intercalated

Co-3𝑑 atoms. Further calculations show that the 𝛽 pocket

are indeed the Fermi-arc surface states originated from the

predicted chiral Dirac-like points located 0.17 eV above

the Fermi level, rather than a trivial surface resonance of

the bulk band [see Fig. S9(a)]. Therefore, the agreement

between our photon-energy dependent ARPES measure-

ment and DFT calculation supports a surface origin of the

electron pockets.
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While along �̄�–𝛤–�̄� the ARPES and DFT surface

spectra show agreement, there is a slight mismatch of the

band edge (minimum) of the 𝛽 pocket at �̄� obtained from

ARPES and DFT. Such discrepancy is due to the fact

that our DFT calculations are based on a single-domain

collinear AFM order, with the rectangular magnetic BZ

(MBZ) shown in Fig. 3(g). As a result, the band edge

appears at the 𝑌 point, the boundary of the MBZ. On

the other hand, the ARPES spectra inevitably averages

multiple magnetic domains with the same ground-state

energy, thus restoring the hexagonal symmetry for the sur-

face BZ (SBZ) and band edges appearing at the �̄� valley

( ¯𝛤𝐾 = 4
3

¯𝛤𝑌 ). Figure 3(h) shows the measured Fermi

surface indicating an identical shape and size of BZ to

that of a nonmagnetic unit cell. However, the measured

Fermi surface as well as the dispersion can hardly be re-

produced by the nonmagnetic calculation of CoNb3S6 (see

Section S4.3 of the Supplementary Materials), while the

AFM order gives rise to a rectangular MBZ with lower

symmetry.

To solve the dilemma, we consider three equivalent

𝑞-vectors related by 𝐶3 rotational symmetry, rendering

three energetically degenerate magnetic domains with

three rectangular MBZs rotating 120∘ with respect to each

other. Therefore, an effective hexagonal SBZ is formed,

with the size identical to the nonmagnetic one [Fig. 3(g)].

The left panel of Fig. 3(i) shows the calculated surface

state Fermi surfaces for each single AFM domain and il-

lustrates the formation of the hexagonal Fermi surface by

superposing the Fermi surfaces of these three equivalent

domains. Figure 3(h) and the right panel of Fig. 3(i) com-

pare the Fermi surfaces from ARPES and DFT. ARPES

mapping reveals six triangular pockets centered at �̄�

formed by the 𝛽 pocket [indicated by the black arrow in

Fig. 3(h)]. Instead of an open line, the closed shape of such

pocket is in line with the fact that the bottom of 𝛽 pocket

resides below the Fermi level at �̄� and above it at �̄� (see

Section S4.2 of the Supplementary Materials). According

to our DFT calculation, each triangular pocket is formed

by three peanut-like surface pockets from three equivalent

AFM domains. The broadness of the measured surface

bands, as evidenced by the momentum distribution curve

analysis in Section S5 of the Supplementary Materials,

may smear out the fine structure of the calculated surface

states, resulting into broad 𝛽 band features centered at

�̄�. In addition, the small pocket centered at 𝛤 of the

second BZ [Fig. 3(h), blue arrow and blue dashed circle]

is in agreement with our DFT calculation [Fig. 3(i), blue

arrow], further validating the general agreement. We note

that due to the dipole matrix element effect in photoemis-

sion experiments (also see Section S6 of the Supplemen-

tary Materials), such small pocket is not visible in the first

BZ. The general agreement between ARPES and DFT re-

sults throughout this work validates the above arguments

and the existence of Fermi arc surface states associated to

the chiral Dirac-like fermions in CoNb3S6.

-0.2 -0.1 0 0.1 0.2

0.4 0.5 0.6

-50

0

50

100

150

200

Bulk
5-layer slab

-0.08

-0.09

-0.10

-0.11

-0.12

E
n
er

gy
 (

eV
)

-200

-100

0

 100

 200

 300
Bulk
5-layer slab

Without SOC

0

-1

1

T=22 K
T=23 K
T=24 K
T=25 K
T=26 K
T=28 K
T=29 K

B//c

-6 -4 -2 0 2 4 6

B (T)

-100

-50

0

50

100

B (T)

-6

-15-10 -5 0 5 10 15

-3

0

3

6

Energy (eV)

Energy (eV)

r
x
y 

(m
W
Sc

m
)-

1
s
x
y 

(W
Sc

m
)-

1

s
x
y 

(W
Sc

m
)-

1
s
x
y 

(W
Sc

m
)-

1

C2x axis

C2x axis

With SOC

M-d M'-d M'+dM'M+dM

-
D
M

 (
m
m

B
/C

o)

A

(a)

(b)

(c) (d)

(e) (f)

Fig. 4. Origin of the large anomalous Hall in CoNb3S6. (a) Field evolution of the Hall resistivity measured at

different temperatures. (b) The anomalous Hall conductivity (blue empty circles) scales with the ferromagnetic

component (orange empty circles) at 𝑇 = 26K. The magnetic field is along the 𝑐 axis. (c) Crystal structure

of CoNb3S6, where the black ticks show the plane to which rotation axis of 𝐶2𝑥 exists. (d) Anomalous Hall

conductivity near the Fermi level. (e) Band dispersion near a chiral Dirac point of CoNb3S6 without and with SOC,

where 𝑀 = (0.4998, 0.1495, −0.0003), 𝑀 ′ = (0.4946, 0.1474, −0.0001), 𝛿 = (0.1000, 0.0000, 0.0000). Anomalous

Hall conductivity 𝜎𝑥𝑦 of Bulk and 5-layer slab calculated near the energy level of chiral Dirac points shown in (f),

where the grey dashed line shows the energy level of chiral Dirac point (0.48 eV).

Anomalous Hall Effect. The most intriguing finding

in the CoNb3S6 system is the emergence of a substantial

anomalous Hall effect, accompanied by a small but not

negligible net magnetic moment. [24–27,33] These results are

also verified by our transport measurements. Figure 4(a)

presents the field evolution of the Hall resistivity measured
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from 22K to 29K with 𝐼||𝑎 and 𝐵||𝑐. For 𝑇 = 29K> 𝑇N,

linear dependence of the Hall resistivity as a function of

magnetic field [brown line in Fig. 4(a)] was observed. The

positive slope of the Hall resistivity suggests that holes are

the majority charge carriers in CoNb3S6. When the tem-

perature is below 23K, the coercive field becomes larger

than 14T. By subtracting the linear ordinary Hall back-

ground and using 𝜎𝐴
𝑥𝑦 = 𝜌𝐴𝑥𝑦/[(𝜌

𝐴
𝑥𝑦)

2 + (𝜌𝑥𝑥)
2], a large

anomalous Hall conductivity 𝜎𝐴
𝑥𝑦 ∼ 92 [Ω · cm]−1 was ob-

tained at 26K [Fig. 4(b)]. More detailed information is

presented in Section S7 of the Supplementary Materials.

To examine the ferromagnetic contribution to the anoma-

lous Hall conductivity, the field dependent ferromagnetic

component (−Δ𝑀) along the 𝑐 axis is plotted as well [or-

ange empty circles in Fig. 4(b)]. The measured Δ𝑀 is

∼ 0.001𝜇B/Co, which seems too insignificant to induce a

fairly large AHE. Such a strong scaling between the AHE

and ferromagnetic canting Δ𝑀 could be explained by the

large hidden Berry curvature due to the chiral Dirac-like

fermions.

Due to the symmetry operation of time-reversal com-

bined with nonsymmorphic translation {𝑇 ||𝐸|𝜏(𝑎+𝑏)/2}
(see Section S4.1 and Table S2 in the Supplementary Ma-

terials), bulk CoNb3S6 cannot exhibit finite anomalous

Hall conductivity. However, rather than being intrinsi-

cally absent, the Berry curvature originated from the non-

trivial bands is large yet compensated by the global high

symmetry. [34,35] Therefore, the small ferromagnetic (FM)

canting along the 𝑧-axis and finite SOC play a role of

symmetry breaking that reveals the large Berry curvature

effect hidden in the otherwise doubly degenerate bands,

thus leading to finite anomalous Hall effect. Here we con-

sider bulk and 5-layer thin film CoNb3S6 with the experi-

mental AFM order. Our calculations show that, although

bulk states exhibit anomalous Hall conductivity (AHC)

smaller than 1 [Ω · cm]−1 under small magnetic canting,

large AHC approaching 185 [Ω · cm]−1 emerges for the

thin film when the chemical potential is 0.01–0.03 eV be-

low the theoretical Fermi level [Fig. 4(d)]. The remarkable

difference between bulk CoNb3S6 and the thin film could

be attributed to the fact that all the rotation symmetries

in thin-film CoNb3S6 are broken even without small mag-

netic canting (see Section S8.1 and Table S3), as is shown

in the crystal structure of CoNb3S6 [Fig. 4(c)].

There are quite a few chiral Dirac-like fermions near

the Fermi level, when considering SOC, some of them split

to a twin pair of conventional Weyl points with identi-

cal chirality [Fig. 4(e)] and others are gapped. Since chi-

ral Dirac points is obstructed by the complicated generic

metallic bands around the Fermi level [Fig. 1(e)]. To reveal

the relationship of the chiral Dirac-like fermions and the

AHC more clearly, we show another energy window (0.4–

0.6 eV) where there is only one pair of chiral Dirac-like

points at 0.48 eV. With SOC and FM canting, the pair of

chiral fermions is gapped, leading to sharp peaks of AHC

(∼ 200 [Ω · cm]−1) around the corresponding chemical po-

tential [Fig. 4(f)]. Therefore, the large AHE in collinear

AFM CoNb3S6 results from the Berry curvature of the chi-

ral Dirac-like fermions as well as symmetry breaking by

SOC, ferromagnetic canting. Furthermore, our results are

also consistent with the fact that AHC measured in thin

films is much larger than that measured in thick slabs. [25]

Discussion. Except for the mechanism discussed

above, due to the complexity of magnetic configuration

and surface topography in CoNb3S6, other mechanisms

cannot be fully ruled out. Here we discuss our findings

in connection with recent progress in this particular ma-

terial system, to offer a more comprehensive description

reconciling observations by different experimental tech-

niques. Notably, motivated by the anomalous trans-

ports, a triple-𝑞 AFM order has been recently reported

in Co𝑀3S6 (𝑀 =Ta and Nb) by using polarized neu-

tron scattering measurements, [36,37] suggesting a “spon-

taneous topological Hall effect”, i.e., sizable AHE orig-

inated from the noncoplanar magnetic order rather than

the net moment (see Section S8.2). However, the observed

transport property of CoNb3S6 exhibits remarkable sam-

ple dependency, indicating that the existence of such a

tiny net moment indeed plays a crucial role. By mea-

suring different Co𝑥Nb3S6 samples with slightly changed

Co composition (0.92 < 𝑥 < 1), we find the correla-

tion between the existence of net magnetization and the

existence of AHE (see Section S9). These results are

also confirmed by the recent measurements with varying-

composition samples. [26,27] Nevertheless, the absence of

AHE without net magnetization in CoNb3S6 cannot be

reconciled by the triple-𝑞 scenario. In addition, accord-

ing to our DFT calculation, the Fermi surface of triple-𝑞

configuration cannot well reproduce the ARPES-measured

Fermi surface (see Section S10).

From the aspect of neutron diffraction, the direct ev-

idence to distinguish triple-𝑞 magnetization and multido-

main single-𝑞 configuration is still lacking. The existing

zero-field polarized neutron scattering taken by Takagi

et al. [36] unfortunately cannot provide enough informa-

tion because the two magnetic structures share similar

diffraction patterns and peak intensities. [25] Similar phe-

nomena are also observed in Na2Co2TeO6, thereby posing

challenges in distinguishing between its zigzag order and

triple-𝑞 order through zero-field neutron scattering. [38,39]

To overcome this, high-field neutron scattering experi-

ments are desirable to distinguish these possibilities. [38,39]

However, due to the presence of a large antiferromagnetic

exchange interaction (the fitted Curie–Weiss temperature

is −174K) in the CoNb3S6 system, a very high magnetic

field (∼ 60T) is required to fully polarize the magnetic

moments. Overall, considering all the experimental re-

sults mentioned above, the complexity of CoNb3S6 fam-

ily exhibiting interesting sample dependence may imply a

composite phase diagram with distinct magnetic configu-

rations, calling for more direct evidence for future studies.

Last but not the least, we discuss the impact of our

work regarding the classification and related properties of

collinear AFM materials in zero SOC limit, which have
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caught remarkable attention recently. The predominant

example is the emerging field of altermagnetism, [40,41]

with spin splitting band structures originated from the

AFM order. By definition, altermagnets are a special type

of AFM where the sublattices with opposite magnetic mo-

ments are symmetry connected by operations other than

inversion or translation; otherwise, there is two-fold spin

degeneracy throughout the Brillouin zone. On the other

hand, our work reveals that for spin-degenerate AFM,

there is significant difference between the two classes,

i.e., the critical symmetry connecting different sublat-

tices is inversion, or translation. [42] The former corre-

sponds to the conventional AFM with 𝑃𝑇 symmetry,

manifesting zero topological charge for a conventional

Dirac semimetal. For the latter, despite spin degeneracy,

the band nodes manifest nonzero topological charges (e.g.,

due to {𝑈𝑧(𝜋)||𝐸|𝜏(𝑎+𝑏)/2} in CoNb3S6), corresponding to

chiral Dirac semimetal. Therefore, our work reveals un-

conventional properties in a class of spin-degenerate AFM,

paving an avenue for exploring unexpected emergent phe-

nomena for AFM spintronics.

Sample Growth. Single crystals of CoNb3S6 were

grown by chemical vapor transport using iodine as the

transport agent. Cobalt powder (99.998%), niobium wire

(99.995%) and sulfur powder (99.998%) in 1 : 3 : 6 molar

ratio were loaded together with 0.3 g of iodine in a silica

tube of 17mm inner diameter and 150mm length. Af-

ter being evacuated down to 10−3 Pa and sealed, the tube

was placed in a two-zone horizontal tube furnace, and the

source and growth zones were raised to 1123K and 1023K,

and then held for seven days. The hexagonal black crys-

tals with lateral dimensions up to several millimeters can

be obtained.

Magnetization and Electric Transport. The magneti-

zation measurements were performed on a Quantum De-

sign magnetic property measurement system with a single

crystal mounted on a quartz stick. The electric transport

measurements were performed on a 14T Quantum Design

physical property measurements system with a conven-

tional 4-probe method. Al wires of 25µm diameter were

attached to the sample by using a wire bonding machine.

An electric current of 2mA was applied along the 𝑎 axis,

and the magnetic field was oriented along the 𝑐 axis.

Neutron Diffraction. The single crystal neutron

diffraction experiments were carried out using a single-

crystal neutron Laue diffractometer, KOALA, [43] at the

OPAL reactor at ANSTO and a time-of-flight single-

crystal neutron Laue diffractometer, SENJU, [44] at the

Materials and Life Science Experimental Facility of the

Japan Proton Accelerator Research Complex. Two dif-

ferent single crystals (one with AHE, the other without

AHE) with dimensions of about 3×3×0.2mm3 were used

for the neutron diffraction experiments and the diffraction

patterns were both collected at 3K (below 𝑇N) and 40K

(above 𝑇N), respectively. The powder neutron diffraction

experiment was performed on the time-of-flight powder

diffractometer, POWGEN, [45] at the Spallation Neutron

Source at Oak Ridge National Laboratory. The powder

sample with a total mass of ∼ 1 g was prepared by grinding

about hundreds of single crystals and the powder neutron

diffraction data were acquired between 10K and 300K

using the 0.8 and 2.67 Å instrumental configurations. All

of the neutron diffraction data were analyzed using the

Rietveld refinement program FULLPROF suite. [46]

Angle-resolved Photoemission Spectroscopy Experi-

ments. The ARPES measurement was taken with 60–

165 eV photons and a Scienta Omicron DA30 analyzer.

The sample was cleaved in ultra-high vacuum with pres-

sure lower than 1× 10−10 torr. During the measurement,

the temperature of the sample was kept at around 8K.

The beam spot of the light is less than 50µm.

First-Principles Calculations. The first-principles cal-

culations were carried out using projector-augmented-

wave method, [47] implemented in Vienna ab initio simula-

tion package (VASP) [48] within the framework of density-

functional theory. [49,50] The exchange and correlation ef-

fects were accounted by the generalized gradient ap-

proximation (GGA) with the Perdew–Burke–Ernzerhof

formalism. [51] A cut-off energy of 520 eV is used in our

calculations. The whole Brillouin-zone was sampled by

5 × 8 × 4 Monkhorst–Pack grid [52] for all cells. Due to

the local magnetic moments contributed from 3𝑑 electrons

in Co atoms, GGA+𝑈 approach [53] within the Dudarev

scheme [54] is applied and we set the 𝑈 on Co to be 1 eV,

which produces local magnetic moments of 1.8𝜇B consist-

ing well with the experiments. [31] A tight-binding Hamil-

tonian is obtained base on maximally localized Wannier

functions [55,56] of Co-3𝑑, Nb-4𝑑, S-3𝑝 orbitals, from which

the topological surface states and Chern number are calcu-

lated. Iterative Green’s function implemented in Wannier-

Tools package is used for surface states calculations. [57]
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S1. Dirac-like field with chirality 

First, we briefly review the Dirac field. Its field operators furnish a 4D irreducible representation of the Lorentz 

group. After that, we considered the symmetry condition supporting the flavor Weyl field. The Lorentz group is the 

group of Minkowski space-time symmetries obeying the principle of relativity. Such a group can be written as a 

combination of two disconnected pieces— 𝑂(3,1) = 𝑆𝑂(3,1) + 𝑃 𝑆𝑂(3,1) , where 𝑆𝑂(3,1)  is a connected 

subgroup of 𝑂(3,1). Any irreps of 𝑆𝑂(3,1) can be labeled by the irreps of two su(2) algebras, denoted as (𝑗+, 𝑗−), 

with 𝑗± = 0, 1/2, 1, 3/2, …, because the Lie algebra of 𝑆𝑂(3,1) consists of six generators forming two individual 

su(2) algebras commuting with each other. Weyl fields—the simplest fields for spin-½ fermions—furnish the irrep 

(0, 1/2) or (1/2, 0) for right or left-handedness, satisfying two-component massless Weyl equations when P is 

broken. The reducible representation of 𝑆𝑂(3, 1), i.e., (0, 1/2)⨁(1/2, 0), in the presence of P, becomes irreducible 

for the Lorentz group 𝑂(3, 1), giving rise to the Dirac fields.  

The Dirac fields obey the famous Dirac equation, (−𝑖𝛼𝑖𝜕𝑖 + 𝑚𝛽)𝜓(𝑥) = 𝑖𝜕0𝜓(𝑥), where 𝛼𝑖 = 𝜏𝑥⨂𝜎𝑖 and 

𝛽 = 𝜏𝑧⨂𝜎0. It explains several new phases and phenomena such as antimatter, SOC, and Zeeman effect. However, 

seldom considered is the possibility of elementary spin-1/2 particles described by four-component fields having 

(1/2, 0) ⨁(1/2, 0) (or equivalently, (0, 1/2) ⨁(0, 1/2)). To achieve such fields, P should be broken, reducing the 

corresponding symmetry group to 𝑆𝑂(3,1) . Therefore, (1/2, 0) ⨁(1/2, 0)  would become a reducible 

representation, corresponding to a field that naturally decomposes into two Weyl fields. Second, additional internal 

symmetries need to be assumed to elevate the symmetry hierarchy of the system, rendering (1/2, 0) ⨁(1/2, 0) 

representation irreducible. Internal symmetry operations are required to decouple the space-time operations 

according to the Coleman–Mandula theorem [1]. Furthermore, we selected them to form an 𝑆𝑈(2)  group 

connecting two Weyl fields with the same chirality, analogous to the 𝑆𝑈(2) flavor symmetry in high-energy physics. 

Specifically, it is analogous to the isospin symmetry proposed by Heisenberg, pairing a proton and a neutron forming 

an 𝑆𝑈(2) doublet [2]. 

Such isospin symmetry can stabilize free and causal quantum fields that follow the representation 

(1/2, 0) ⨁(1/2, 0) (and (0, 1/2) ⨁(0, 1/2)). The corresponding fields are called flavor Weyl fields, described by 

the following massless Dirac-like equation: 

𝑖𝛼𝑖𝜕𝑖𝜓(𝑥) = ±𝑖𝜕0𝜓(𝑥),                            (1) 

where 𝜓(𝑥) denotes a four-component free field operator and 𝛼𝑖 = 𝜏𝑖⨂𝜎0. Furthermore, the energy spectrum 

of equation (1) is doubly degenerate owing to the protection of the additional 𝑆𝑈(2) group, resembling the role of 

P in the Dirac equation. 

To construct such flavor Weyl field, we firstly assume that inversion symmetry is broken such that left-handed 

Weyl field and right-handed Weyl field could exist individually. Then, we further assume a four component Dirac 

field can be written as the form 𝜓 = (
𝜓𝐿

1

𝜓𝐿
2) where 𝜓𝐿

1 and 𝜓𝐿
2 are two left-handed and 2-component Weyl fields 

following the irreducible representation (1/2, 0) of the proper orthochronous Lorentz transformation. Then the 

representation matrices of the angular momentum operators and boost operators of proper orthochronous Lorentz 

transformation are 𝓙 =
1

2
𝜏0 ⊗ 𝝈,  𝓚 = −

𝑖

2
𝜏0 ⊗ 𝝈, where 𝜏𝑖 and 𝜎𝑗  (i=0, x, y, z) are Pauli matrices. 

Such field is reducible under proper orthochronous Lorentz transformation, to stabilize this field, we further 

assumes that there is an internal 𝑆𝑈(2)  symmetry group with generators represented as 𝓘 =
1

2
𝝉 ⊗ 𝜎0 , which 
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implies that the elements of 𝑆𝑈(2)  group transform on 𝜓 = (
𝜓𝐿

1

𝜓𝐿
2)  by 𝑒𝑥𝑝(−𝑖𝜽 ⋅

1

2
𝝉) (

𝜓𝐿
1

𝜓𝐿
2) , identical to the 

transformation properties of 𝑆𝑈(2) isospin symmetry on two quantum fields in standard model. Then, it is obvious 

that such field describe one particle formed by two Weyl fields connected by the internal 𝑆𝑈(2) symmetry group. 

From quantum field theory, the field operator can be written as the following form 

                  𝜓ℓ(𝑥) = 𝜅𝜓ℓ
+(𝑥) + 𝜇𝜓ℓ

𝑐−(𝑥),                    (2) 

𝜓ℓ
+(𝑥) = ∑ ∫𝑠1, 𝑠2

𝑑3𝒑

(2𝜋)3/2
 𝑢ℓ(𝒑,  𝑠1,  𝑠2) 𝑎(𝒑, 𝑠1,  𝑠2) 𝑒𝑖𝑝𝑥,        (3) 

𝜓ℓ
𝑐−(𝑥) = ∑ ∫

𝑑3𝒑

(2𝜋)3/2
 𝑣ℓ(𝒑,  𝑠1,  𝑠2) 𝑎𝑐†(𝒑,  𝑠1,  𝑠2)𝑒−𝑖𝑝𝑥

𝑠1, 𝑠2
,        (4) 

where ℓ  labels the 4 components of the field operator, 𝑎(𝒑, 𝑠1,  𝑠2)  and 𝑎𝑐†(𝒑,  𝑠1,  𝑠2)  are the annihilation 

operator of a spin-1/2 particle and creation operator of the antiparticle, with eigenvalue of momentum operator to be 

𝒑 , helicity 𝑠1  (𝑠1 = ±1/2 ) and eigenvalue of third component of the internal 𝑆𝑈(2)  symmetry ℐ𝑧  to be 𝑠2 

( 𝑠2 = ±1/2 ). 𝑢ℓ(𝒑,  𝑠1,  𝑠2)  and 𝑣ℓ(𝒑,  𝑠1,  𝑠2)  are components of 4 × 1  column vectors, that are complex 

functions of 𝒑,  𝑠1 and  𝑠2.  

Then, by assuming the operation of internal 𝑆𝑈(2)  symmetry group on 𝑎(𝒑, 𝑠1,  𝑠2)  to be ∑ 𝑒𝑥𝑝(−𝑖𝜽 ⋅𝑠2̅̅̅

1

2
𝝈)𝑠2 𝑠2̅̅̅𝑎(𝒑, 𝑠1,  𝑠2̅) and follow the process of constructing field operator provided in Ref. [3], we can see that 𝜓 

can be constructed for describing massless spin-1/2 particles following the causal relation [𝜓𝑙(𝑥), 𝜓
ℓ̅
†(𝑦)]

∓
= 0 for 

𝑥 − 𝑦 space like. It could also be shown that this field obeys the following equation  

(− ∂0 + 𝛼𝑖𝜕𝑖)𝜓(𝑥) = 0,                            (5) 

where 𝛼𝑖 = σ0⨂𝜎𝑖. This 4-component field have 4 independent variables, however, when we do not assume internal 

𝑆𝑈(2) symmetry group, the field operator will reduce to operators with two independent variables, which is actually 

the Weyl field. Thus, this 𝑆𝑈(2) symmetry group helps to stabilize the flavor Weyl field. 

 

 

S2. Magnetic structure analysis 

Our single crystal neutron diffraction measurement at 𝑇 = 3 K (𝑇 < 𝑇N) revealed three magnetic propagation 

vectors (0.5, 0, 0), (0, 0.5, 0) and (0.5, -0.5, 0), which correspond to three equivalent magnetic domains allowed by 

the 3-fold rotational symmetry along the c axis in CoNb3S6 (see Fig. 1b). To analyze CoNb3S6’s possible magnetic 

structure, we used 𝒒 m = (0.5, 0, 0) as the magnetic propagation vector and applied representation theory. Four 

different irreducible representations (IR) were used to describe the possible spin configurations for space group 

P6322 (No. 182) with Co site at (1/3, 2/3, 1/4), as shown in Fig. S1 and Table S1.   
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Fig. S1. The magnetic structures for the IR Γ1, Γ2, Γ3 and Γ4. For Γ1 and Γ4, the spins are constrained in the ab plane. 

The spin arrangement between Co1 and Co2 is parallel for Γ1 and antiparallel for Γ4. For Γ2 and Γ3, the spins lie in 

the bc plane. The spin components are parallel along the b axis and antiparallel along the c axis between Co1 and 

Co2 for Γ2. In contrast, Γ3 shows the opposite spin configuration. The magnetic space group for each IR is labeled at 

the top of each panel. 

Table S1. Basis vectors of decomposed irreducible representations (IR) of space group P6322 with magnetic wave-

vector 𝒒𝒎 = (0.5, 0, 0) and Co site at (1/3, 2/3, 1/4). 

IR 
Co1 (1/3, 2/3, 1/4) 

mx my mz 

Co2 (2/3, 1/3, 3/4) 

mx my mz 

1 2 1 0 2 1 0 

2 
0 -1 0 0 -1 0 

0 0 1 0 0 -1 

3 
0 -1 0 0 1 0 

0 0 1 0 0 1 

4 2 1 0 -2 -1 0 

 

To distinguish these four magnetic structures for CoNb3S6, the details of magnetic neutron scattering cross 

section for various magnetic Bragg peaks need to be considered:  

          σ(q) = (
𝛾𝑟0

2
)2𝑁𝑚

(2𝜋)3

𝑉𝑚
〈𝑀〉2|𝑓(𝑞)|2|𝐹|2〈1 − (�̂� ∙ �̂�)𝟐〉           (6) 

where (
𝛾𝑟0

2
)2 = 0.07265 𝑏𝑎𝑟𝑛/𝜇𝐵

2 , 𝑁𝑚 is the number of magnetic unit cells in the sample, 𝑉𝑚 is the volume 

of the magnetic unit cell, 𝑀 and 𝑓(𝑞) is the magnetic moment and magnetic form factor of Co2+, respectively, 𝐹 

is the magnetic structure factor per magnetic unit cell, �̂� is the unit vector of neutron scattering vector 𝒒,  �̂� is the 

unit vector of the magnetic moment of Co2+ ions, 〈1 − (�̂� ∙ �̂�)𝟐〉 is the polarization factor which is averaged over 

magnetic domains for 𝒒m = (0.5, 0, 0). 
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Fig. S2. a, An arbitrary spin (green arrow) on Co site. The angle between the spin and 𝑐 axis is β, the angle between 

the projection of the spin (blue arrow) on the ab plane and  �⃗� axis is 𝛼. b, The distribution of the six magnetic M 

domains (blue arrows) in the ab plane with magnetic propagation vector 𝒒𝐦 = (0.5, 0, 0). The red arrow corresponds 

to the the reciprocal lattice space. 

Since the Co2+ ions located at 2c Wyckoff sites with site point group D3, for an arbitrary moment orientation, 

there are six magnetic M domains for 𝒒𝒎  = (0.5, 0, 0), as illustrated by the blue arrows in Figs. S2a,b. The unit 

vector �̂�𝒊 of the magnetic moment for the six magnetic M domains can be described: 

�̂�𝟏 =  (
s𝑖𝑛(120°−𝛼)𝑠𝑖𝑛𝛽

𝑠𝑖𝑛60° , 
𝑠𝑖𝑛𝛼𝑠𝑖𝑛𝛽

𝑠𝑖𝑛60° , 𝑐𝑜𝑠𝛽),                      (7) 

�̂�𝟐 =  (
𝑠𝑖𝑛𝛼𝑠𝑖𝑛𝛽

𝑠𝑖𝑛60°
, 

s𝑖𝑛(120°−𝛼)𝑠𝑖𝑛𝛽

𝑠𝑖𝑛60°
, −𝑐𝑜𝑠𝛽),                      (8) 

�̂�𝟑 =  (
−𝑠𝑖𝑛𝛼𝑠𝑖𝑛𝛽

𝑠𝑖𝑛120° , 
s𝑖𝑛(60°−𝛼)𝑠𝑖𝑛𝛽

𝑠𝑖𝑛120°  , 𝑐𝑜𝑠𝛽),                      (9) 

�̂�𝟒 = (
−s𝑖𝑛(60°+𝛼)𝑠𝑖𝑛𝛽

𝑠𝑖𝑛60° , 
−s𝑖𝑛(60°−𝛼)𝑠𝑖𝑛𝛽

𝑠𝑖𝑛60° , −𝑐𝑜𝑠𝛽),                    (10) 

�̂�𝟓 = (
−s𝑖𝑛(60°−𝛼)𝑠𝑖𝑛𝛽

𝑠𝑖𝑛60° , 
−s𝑖𝑛(60°+𝛼)𝑠𝑖𝑛𝛽

𝑠𝑖𝑛60° , 𝑐𝑜𝑠𝛽),                     (11) 

�̂�𝟔 = (
s𝑖𝑛(60°−𝛼)𝑠𝑖𝑛𝛽

𝑠𝑖𝑛120° , 
−𝑠𝑖𝑛𝛼𝑠𝑖𝑛𝛽

𝑠𝑖𝑛120° , −𝑐𝑜𝑠𝛽).                      (12) 

Denote (h, k, l) as the Miller indices of the neutron scattering vector 𝒒 = (ℎ𝒂∗, 𝑘𝒃∗, 𝑙𝒄∗), then we have 

                〈1 − (�̂� ∙ �̂�)𝟐〉 = 1 −
2(𝑠𝑖𝑛𝛽)2(ℎ2+𝑘2+ℎ𝑘)

3𝑎2𝑑2 −
(𝑐𝑜𝑠𝛽)2𝑙2

𝑐2𝑑2 ,        (13) 

where 𝒂∗ =
𝟐𝝅�̂�∗

√𝟑

𝟐
𝒂

 , 𝒃∗ =
𝟐𝝅�̂�∗

√𝟑

𝟐
𝒂

 ,  𝒄∗ =
𝟐𝝅�̂�∗

𝒄
 ,  𝒅 =

|𝒒|

𝟐𝝅
= √

4(ℎ2+𝑘2+ℎ𝑘)

3𝑎2 +
𝑙2

𝑐2 . It is worth noting that the angle 𝛼 

disappears in the polarization factor 〈1 − (�̂� ∙ �̂�)2〉 after averaging all the six M magnetic domains, which means 

the spin direction in the ab plane cannot be determined by the neutron diffraction.  

Due to the limited magnetic reflections of the single-crystal diffraction experiment, an additional powder neutron 

diffraction experiment was performed to determine the magnetic structure of CoNb3S6. Fig. S3 and Fig. S4 present 

the powder neutron diffraction patterns measured at 100 K and 10 K, respectively. Consistent with our single crystal 
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X-ray diffraction results, the Rietveld refinement of the powder neutron diffraction data at 100 K confirms the 

Hexagonal structure of CoNb3S6 with space group P6322 (as shown in Fig. S3). For 𝑇 = 10 K  , a new set of 

reflections emerge around the low-Q region of the diffraction pattern, and can be indexed by the same magnetic 

propagation vector 𝒒𝒎  = (0.5, 0, 0), indicating the magnetic origin. By including the six magnetic M domains, our 

Rietveld refinement shows that Γ4 could give the best fit with Rp = 2.88 and Rwp = 3.68 for powder neutron diffraction 

data at 10 K, as shown in Fig. S4. The refined ordered moment is about 1.64(7) 𝜇𝐵/Co. The schematic plot of the 

collinear magnetic structure is presented in Fig. 1d of the main text, yielding consistent results with the previous 

single crystal neutron diffraction work [4]. Note that the in-plane spin orientation cannot be distinguished due to the 

D3 site point group of Co2+ ions. In sharp contrast, the Urbana’s group [5] concluded a Γ2 magnetic configuration 

with a fixed in-plane spin component along the b-axis (see Table S1). Therefore, the resulting magnetic structure is 

questionable because they ignored the effect of the six M magnetic domains. 

 

Fig. S3. Powder neutron diffraction pattern of CoNb3S6 with Rietveld refinement fit at 100 K. 
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Fig. S4. The powder neutron diffraction pattern measured at 10 K with Rietveld refinement using different magnetic 

structure models a, Γ1, b, Γ2, c, Γ3, d, Γ4. Note that the magnetic reflections in the blue rectangle can be best fitted 

by Γ4 spin configuration. 

Due to the three-fold rotation symmetry C3z along the z axis, besides the possibility of three equivalent magnetic 

domains, the compound could also form a triple-q magnetic order. However, diffraction from three magnetic 

domains with equal populations would in principle be indistinguishable from a triple-q magnetic order. As shown in 

Figs. S5a-c are the schematics of the magnetic structures for three different magnetic domains. A triple-q magnetic 

order can be understood as a vector sum of the above three magnetic domains (Figs. S5d and e). 

  

 

Fig. S5. The in-plane spin configurations for three equivalent magnetic propagation vectors a, qm1= (0.5, 0, 0), b, 

qm2= (0, 0.5, 0) and c, qm3= (0.5, -0.5, 0). d and e are the schematics of the triple-q magnetic order with a vector sum 

of three magnetic domains “1+2+3” and “1+2-3”, respectively. A total of eight domains could be expected for the 

triple-q magnetic order with different combination of the“1,2,3” three magnetic structures. 
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Single crystal neutron diffraction experiments were also performed on Co0.92Nb3S6 (sample without AHE) at 

Laue diffractometers, KOALA, at the OPAL reactor at ANSTO and SENJU, at the Materials and Life Science 

Experimental Facility of the Japan Proton Accelerator Research Complex. Figs. S6a,b present the single-crystal 

diffraction image in the (H, K, L = 1) scattering plane measured at 𝑇 = 40 K > TN and 𝑇 = 3 K < TN, respectively. 

For T = 3 K, a new set of magnetic bragg peaks emerges, which can also be indexed by the equivalent magnetic 

propagation vectors, qm1=(0.5, 0, 0) and qm3=(0.5, -0.5, 0), respectively. The nuclear structure refinement at T = 3 K 

further confirms P6322 hexagonal structure of Co0.92Nb3S6 with an R-factor RF = 6.94 (Fig. S6c). Due to the weak 

intensity, only 5 magnetic bragg peaks indexed by qm=(0.5, 0, 0) were collected at Laue diffractometer, KOALA. 

By including the six magnetic M domains, we found the spin structure model 4 can give the best fit with RF = 4.71 

(Fig. S6d), which indicates Co0.92Nb3S6 share the same magnetic structure with CoNb3S6. The refined ordered 

moment for Co0.92Nb3S6 is about 1.52(5) 𝜇𝐵/Co, which is also comparable with the ordered moment of CoNb3S6. 

 

Fig. S6. Single-crystal neutron diffraction image of Co0.92Nb3S6 in the (H, K, L = 1) scattering plane measured at 

Laue diffractometer, SENJU, with a, 𝑇 = 40 K > TN, b, 𝑇 = 3 K < TN. The reflections marked by blue circles, and 

squares are from two different magnetic domains indexed by equivalent magnetic propagation vectors, qm1 = (0.5, 0, 

0) and qm3 = (0.5, -0.5, 0), respectively. c, The nuclear structure refinement of Co0.92Nb3S6 at T = 3 K. d, The magnetic 

structure refinement of Co0.92Nb3S6 at T = 3 K. The calculated magnetic intensities vs observation using 4 spin 

configuration. The data used in c and d was collected at Laue diffractometer, KOALA.  

 

S3. Magnetization measurements of CoNb3S6 

Fig. S7 shows the temperature evolution of the magnetization M(T) measured at H=0.1 T with field along the a 
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and c axis. For H//a, the zero-field cooled (ZFC) and field cooled (FC) measurements show identical behaviors. Both 

the M(T) curves exhibit a broad peak around T = 30 K and a sharp decrease at T = 28.3 K, suggesting 

antiferromagnetic (AFM) phase transition in CoNb3S6. For H//c, M(T) curves show an irreversible behavior between 

the FC and ZFC measurements below TN. The ZFC magnetization initially increases on cooling and reaches the 

maximum at 28.5 K, followed by an abruptly decrease around TN = 28.3 K. Further lowering the temperature, it 

shows an additional upturn feature below 26.1 K. As a comparison, the FC magnetization shows an abruptly increase 

around TN, reaches a maximum at 27.6 K and decreases on further cooling. These irreversible behaviors observed in 

M(T) indicate the presence of ferromagnetic component along the c axis.  

 

Fig. S7. Temperature dependence of the magnetization measured at H=0.1 T with field along the a and c axis. The 

blue and red lines represent the field cooled (FC) and zero field cooled (ZFC) measurements, respectively. 

The isothermal magnetization M(H) curves, measured from 22 K to 29 K with H//c, are shown in the Fig. S8. 

For T = 29 K > TN, nearly linear M(H) curves were observed between -7 T and 7 T, while, for T < TN, a small 

ferromagnetic hysteresis loop gradually began to emerge, implying the ferromagnetic component was accompanied 

by the AFM phase transition. As lowering the temperature, the hysteresis loop gradually becomes larger due to the 

increase of the ferromagnetic coercive field. When the temperature is below 24 K, the coercive field becomes larger 

than 7 T, beyond the limit of our experimental MPMS magnet, which results in the incomplete hysteresis loops, as 

shown in Fig. S8b. 
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Fig. S8. Field dependence of the magnetization measured from 22 K to 29 K with field along the c axis. 

S4. Symmetry analysis of CoNb3S6 

S4.1. Doubly degenerate bands of CoNb3S6  

CoNb3S6 belongs to space group P6322 (No. 182). It is a collinear antiferromagnet with magnetic moments 

oriented along a crystal axis within the ab plane. This magnetic structure corresponds to the magnetic space group 

PB21212 (No. 18.22) and the spin space group 𝑃𝐵 21 
1 21 

1 2  
1 1 

∞𝑚 . According to previous work [6], the elements of 

this spin space group are listed in Table S2. From Table S2, we can prove that the element {𝑈z(𝜋)||𝐸|𝝉(𝒂+𝒃)/2} is 

included in the spin space group without SOC. In addition, the {𝑈z(𝜋)||𝐸|𝝉(𝒂+𝒃)/2} preserve double degeneracy in 

the whole Brillouin zone.  

In fact,{𝑈z(𝜋)||𝐸|𝝉(𝒂+𝒃)/2}is an symmetry keeping the Hamiltonian invariant,  {𝑈z(𝜋)||𝐸|𝝉(𝒂+𝒃)/2}𝜀(𝑠, �⃗⃗�) =

𝜀(𝑠, �⃗⃗�). At the same time, we apply this element on the spin and momentum-dependent energy band 𝜀(𝑠, �⃗⃗�). Since 

𝑈z(𝜋)  will reverse the spin, {𝑈z(𝜋)||𝐸|𝝉(𝒂+𝒃)/2}𝜀(𝑠, �⃗⃗�) = 𝜀(−𝑠, �⃗⃗�) . Hence 𝜀(𝑠, �⃗⃗�) = 𝜀(−𝑠, �⃗⃗�) . The band 

structure is at least double-degenerate in the whole Brillouin zone. 

Table S2. Group elements of the magnetic space group and spin group describing CoNb3S6. 

 Spin space group Group elements 

w/ 

SOC 

𝑃𝐵 21 
2 21 

2 2 
2  

 

H:                      {𝐸||𝐸|0}, {𝑈𝑥(𝜋)||C𝑥(𝜋)|0}, 

{𝑈𝑦(𝜋)||C𝑦(𝜋)|𝝉(𝒃+𝒄)/2}, {𝑈𝑧(𝜋)||C𝑧(𝜋)|𝝉(𝒃+𝒄)/2} 

M:         {𝑇||𝐸|𝝉(𝒂+𝒃)/2}, {𝑇𝑈𝑥(𝜋)||C𝑥(𝜋)|𝝉(𝒂+𝒃)/2}, 

{𝑇𝑈𝑦(𝜋)||C𝑦(𝜋)|𝝉(𝒂+𝒄)/2}, {𝑇𝑈𝑧(𝜋)||C𝑧(𝜋)|𝝉(𝒂+𝒄)/2} 

w/o 

SOC 

Nontrivial: 

𝑃𝐵 21 
1 21 

1 2 
1  

H:                          {𝐸||𝐸|0}, {E||C𝑥(𝜋)|0}, 

{𝐸||C𝑦(𝜋)|𝝉(𝒂+𝒄)/2}, {𝐸||C𝑧(𝜋)|𝝉(𝒂+𝒄)/2} 

M:              {𝑇||𝐸|𝝉(𝒂+𝒃)/2}, {𝑇||C𝑥(𝜋)|𝝉(𝒂+𝒃)/2}, 

{T||C𝑦(𝜋)|𝝉(𝒃+𝒄)/2}, {T||C𝑧(𝜋)|𝝉(𝒃+𝒄)/2} 

Trivial: 

1 
∞𝑚  

{𝑇𝑈𝑛(𝜋)||𝐸||0} (𝑛 = 𝑐𝑜𝑠𝜑�̂� + 𝑠𝑖𝑛𝜑�̂�, 𝜑 ∈ (0, 𝜋]) 

{𝑈𝑥(𝜃)||𝐸||0} (𝜃 ∈ (0,2𝜋]) 

𝝉(𝒂+𝒃)/2 = (1/2,1/2,0), 𝝉(𝒃+𝒄)/2 = (0,1/2,1/2), 𝝉(𝒂+𝒄)/2 = (1/2,0,1/2); 

H/M: elements without/with time-reversal symmetry. 
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S4.2. Chern number and robust Fermi-arc surface states 

From our calculated E-k spectra shown in Figs. S9a-b, it is clear to see that an open line connects two chiral 

Dirac points with opposite chiralities (i.e., N1 and P1). However, for the constant energy contour, such an open line 

can be observed when the two chiral fermions with opposite chirality have the same energy (e.g., in time-reversal 

preserved Weyl semimetal TaAs). Furthermore, in our ARPES measurement, the experimental Fermi level cuts the 

bottom of the Fermi arc surface states (see the green dashed line in Fig. S9a), leading to a small “pocket” formed by 

a closed line (corresponding to the peanut-like Fermi surface shown in Figure S9d). Note that while Fig. S9d 

considers a single magnetic cell, the Fermi surface shown in Fig. 3i takes into account three equivalent magnetic 

domains, thus forming the hexagonal Fermi surface pattern. Fig. S9e shows our DFT calculations that when the 

energy is located in between N1 and P1 (at 0.28 eV), the Fermi arc states exhibit open-line characteristics (black 

arrow). It is worth noting that we consider the (001) surface states with {𝑈𝑧(𝜋)||𝐸|𝜏(𝑎+𝑏)/2}symmetry preserved, 

leading to twofold degenerate surface states and a Chern number of 2 (Figs. S9f,g). This is in sharp contrast to the 

typical topological insulators and Weyl semimetals where the surface states are nondegenerate. 

In fact, Fig. S9a already clearly shows that the β pocket it is a segment of the Fermi arc surface states connecting 

two chiral Dirac points (see the bulk bands marked by the red box in Fig. S9a). Remarkably, the β band does not 

align with the adjacent bulk bands. The energy of bulk band is lower at the �̅� point and higher at the �̅� point (see 

Figs. 3c,f). This contradicts the topological surface states observed, which is lower at the 𝐾 point and higher at the 

�̅� point (see Figs. 3a,d). This is also consistent with the relative energies of the surface and bulk bands for the M 

and Y points shown in Fig. S9a. Thus, we conclude that the β band is a result of the Fermi arc surface states, rather 

than surface resonances. 

 

Fig. S9. The Fermi-arc surface states and Chern number of CoNb3S6. a, The Fermi-arc surface states of CoNb3S6 

contain both bulk and surface contribution. b, Fermi-arc surface states of CoNb3S6 with only surface contribution. c, 
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The 40-layer slab bands calculation with projection on Co-3d (yellow), Nb-4d (green) and S-3p (red) orbitals in the 

first unit cell of NbS2 surface. Fermi-arc surface states are denoted by black arrows. d and e, Isoenergy surface states 

enclosing chiral Dirac points with opposite chirality on (001) surface at Fermi energy (Ef) and 0.28 eV above Fermi 

energy, respectively. The green dashed line denotes the Fermi energy. The red and blue solid dots in d and e represent 

the positions of the chiral Dirac points with opposite chirality. f,g The Wannier charge centers (WCCs) of the chiral 

Dirac points (N1 and P1) and their Chern numbers. N1 = (0.40793, 0.00008, 0.00002), P1 = (0.00001, 0.26514, 

0.00003). 

S4.3. The electronic structure and fermi surface of nonmagnetic CoNb3S6 

 

Fig. S10. The electronic structure and Fermi surface of nonmagnetic CoNb3S6. a and b ARPES spectra taken with 

123 eV photons along the 𝐾 − Γ̅ − 𝐾 and �̅� − Γ̅ − �̅�, respectively. The DFT calculation of nonmagnetic CoNb3S6 

along the above two k-paths with SOC are overlaid on top of ARPES Data. The red arrows indicate the main 

mismatch between APRES measurement and DFT calculation. c and d denote the ARPES Fermi surface mapping 

and DFT calculated Fermi surface for nonmagnetic CoNb3S6, respectively. 

S5. Momentum distribution curves of β at EF 

 

Fig. S11. The ARPES spectra and momentum distribution curves (MDCs) of 𝛽 at EF. a, ARPES spectra of 𝛽 cuts 

at different 𝑘𝑧 value along Γ̅ − 𝐾 − Γ̅ direction, vertical black dashed lines denote 𝐾 points. b, Corresponding 

MDCs (solid lines) for 𝛽 at EF, appended with two Lorentzian peak fitting (dashed lines). c, Fitted peak positions 

for 𝛽 at EF (𝑘𝐹), with the error bars defined by FWHM of the fitted curves.  
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S6. ARPES spectra taken with different polarization light 

Figure S12 shows ARPES spectra taken with different linear polarized photons. The 𝛽 band and dispersion 

away from the Γ̅ point are clearly resolved in the spectra taken with p-polarized light (Figs. S12a,c), while the 

dispersion at the Γ̅ point are either absent or strongly suppressed. In contrast, the spectra taken with s-polarized 

light (Figs. S12b,d) clearly resolve the dispersion at the Γ̅ point, but strongly suppress the dispersion away from the 

Γ̅ point. This distinct intensity distribution of ARPES cuts with different polarized light is attributed to the dipole 

matrix element effect. 

 

Fig. S12. ARPES spectra taken with different polarized light. a,b ARPES cuts along  K̅ − Γ̅ − K̅ direction taken 

with 80 eV LH (p) and LV (s) polarized light, respectively. c,d ARPES cuts along M̅ − Γ̅ − M̅ direction taken with 

80 eV p and s polarized light, respectively. 

 

S7. Electric transport measurements 

The zero-field electrical resistivity as a function of temperature measured with current along the a axis is 

presented in Fig. S13. The anomaly around 28.7 K in 𝜌𝑥𝑥(𝑇)  curve further confirmed the antiferromagnetic 

transition observed in the magnetization measurements. 

 

Fig. S13. Temperature dependence of the electrical resistivity with current along the a axis for CoNb3S6.  

Fig. S14a illustrates the field dependent Hall resistivity measured between 22 K and 29 K with current along the 

a axis and field along the c axis. By subtracting the linear background, large anomalous Hall resistivity can be 

obtained for T < TN, as shown in Fig. S14b. The corresponding anomalous Hall conductivity 𝜎𝑥𝑦
𝐴 = 𝜌𝑥𝑦

𝐴 /((𝜌𝑥𝑦
𝐴 )

2
+



15 

 

(𝜌𝑥𝑥)2) at different temperatures are presented in Fig. S14c. As shown in Fig. S14d is the field evolution of the 

longitudinal resistivity 𝜌𝑥𝑥  measured at different temperatures. Only a small magnetoresistance (MR ~5%) is 

observed below TN. The small jumps observed in the MR curves correspond to the flips of ferromagnetic components. 

Fig. S15a are the ordinary Hall coefficients extracted from the linear fits of the isothermal field dependent Hall 

effect at different temperatures. If a single band model was assumed, the carrier concentration of the holes can be 

estimated by n = 1/|eR0|, and presented in Fig. S15b. The temperature evolution of the carrier concentration shows a 

concave-like feature with the minimum around 1.4× 1021 cm-3 between 23 K and 28 K. 

 

Fig. S14. a, Field evolution of the Hall resistivity measured at different temperatures. b, Field evolution of the 

anomalous Hall resistivity obtained by subtracting the ordinary Hall resistivity. c, Field evolution of the anomalous 

Hall conductivity. d, Field evolution of the longitudinal resistivity measured at different temperatures. 

 

Fig. S15. Temperature dependence of a, the ordinary Hall coefficient and b, carrier concentration. 
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S8. Anomalous hall conductivity of CoNb3S6 

S8.1. Anomalous hall conductivity tensors of collinear AFM CoNb3S6 

According to symmetry analysis, the magnetic space group of bulk CoNb3S6 without/with canting are PB21212 

(No. 18.22) and 𝑃2121
′ 2′ (No. 18.19), respectively. And the magnetic space group of slab CoNb3S6 without/with 

canting are 𝑃S1 (No. 1.3) and 𝑃1 (No. 1.1), respectively. The group elements of these magnetic space groups are 

listed in Table S3. Bulk and slab CoNb3S6 without canting are preserved the 𝑇𝜏1

2

1

2
0
. In addition, the main differences 

between the slab and bulk CoNb3S6 are all rotation symmetry is broken for slab.  

Table S3. Group elements of the magnetic space group describing bulk and slab CoNb3S6 without/with canting. 

 

Bulk Slab  

w/o canting w/ canting w/o canting w/ canting 

Magnetic space 

group 
PB21212 𝑃2121

′ 2′ 𝑃S1 𝑃1 

w/ SOC 

𝐸 

𝑇𝐶2𝑧𝜏
00

1
2
 

𝑇𝐶2𝑦𝜏
00

1
2
 

𝐶2𝑥 

𝑇𝜏1
2

1
2

0
 

𝐶2𝑧𝜏1
2

1
2

1
2
 

𝐶2𝑦𝜏1
2

1
2

1
2
 

𝑇𝐶2𝑥𝜏1
2

1
2

0
 

𝐸 

𝑇𝐶2𝑦𝜏
00

1
2
 

𝐶2𝑧𝜏1
2

1
2

1
2
 

𝑇𝐶2𝑥𝜏1
2

1
2

0
 

𝐸 

𝑇𝜏1
2

1
2

0
 

𝐸 

 

 

For bulk CoNb3S6 without canting, the magnetic space group is PB21212 (No. 18.22). Its form of anomalous hall 

conductivity tensor is 𝜎𝑖𝑗 = (

𝜎𝑥𝑥 0 0
0 𝜎𝑦𝑦 0

0 0 𝜎𝑧𝑧

). Thus the 𝜎𝑥𝑦 = 0 for bulk CoNb3S6 w/o canting. However, when 

a small canting along the z direction, the magnetic space group becomes 𝑃2121
′ 2′  (No. 18.19) and the 

corresponding form of anomalous hall conductivity tensor 𝜎𝑖𝑗 = (

𝜎𝑥𝑥 𝜎𝑥𝑦 0

−𝜎𝑥𝑦 𝜎𝑦𝑦 0

0 0 𝜎𝑧𝑧

), thus 𝜎𝑥𝑦 ≠ 0. 

For slab CoNb3S6 w/o canting, the magnetic space group is 𝑃S1  (No. 1.3). Its form of anomalous hall 

conductivity tensor is 𝜎𝑖𝑗 = (

𝜎𝑥𝑥 𝜎𝑥𝑦 𝜎𝑥𝑧

𝜎𝑥𝑦 𝜎𝑦𝑦 𝜎𝑦𝑧

𝜎𝑥𝑧 𝜎𝑦𝑧 𝜎𝑧𝑧

) . The 𝜎𝑥𝑦 = 𝜎𝑦𝑥  according to the form of anomalous hall 
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conductivity tensor. At the same time, 𝜎𝑥𝑦 is an antisymmetric tensor, which lead to 𝜎𝑥𝑦 = −𝜎𝑦𝑥. Thus, 𝜎𝑥𝑦 = 0 

for slab CoNb3S6 w/o canting. However, when a small canting along the z direction, the magnetic space group 

becomes 𝑃1 (No. 1.1) and the corresponding form of anomalous hall conductivity tensor 𝜎𝑖𝑗 = (

𝜎𝑥𝑥 𝜎𝑥𝑦 𝜎𝑥𝑧

𝜎𝑦𝑥 𝜎𝑦𝑦 𝜎𝑦𝑧

𝜎𝑧𝑥 𝜎𝑧𝑦 𝜎𝑧𝑧

), 

thus 𝜎𝑥𝑦 ≠ 0 for slab CoNb3S6 with canting. 

S8.2. Anomalous hall conductivity tensors of triple-q AFM CoNb3S6 

The magnetic space group and spin space group of triple-q order [7] (or noncoplanar) are 𝑃32′  and 

𝑃3001
2

63
𝑚1002𝑚01022221 , respectively (see Table S4). Its form of anomalous hall conductivity tensor is 𝜎𝑖𝑗 =

(

𝜎𝑥𝑥 𝜎𝑥𝑦 0

−𝜎𝑥𝑦 𝜎𝑦𝑦 0

0 0 𝜎𝑧𝑧

), Thus the 𝜎𝑥𝑦 ≠ 0 for triple-q AFM CoNb3S6 without net moment. The condition for defining 

chiral Dirac point is the existence of the doubly degenerate bands in the whole Brillouin zone, which is achieved 

through a kind of iso-spin symmetry with SU(2) form in the single-q structure of CoNb3S6. In the case of noncoplanar 

triple-q order of CoNb3S6, the little group at general points for spin space group, denoted as 1 
222 , cannot guarantee 

the double degeneracy in the whole Brillouin zone and thus excludes the possibility of chiral Dirac fermions. 

Additionally, our DFT calculations also confirm that the triple-q CoNb3S6 without net magnetization, exhibits an 

anomalous Hall conductivity of approximately 50 Ω-1cm-1 at the Fermi level (Fig. S16b,c). 

 

Fig. S16. Anomalous Hall conductivity of noncoplanar CoNb3S6. a, The magnetic structure of triple-q AFM 

CoNb3S6. b and c denote the anomalous Hall conductivity with and without SOC, respectively. The anomalous Hall 

conductivity at the Fermi level is indicated by a cyan circle. 

Table S4. Group elements of the magnetic space group and spin group describing triple-q CoNb3S6. 

 Generators of group 

Magnetic space group (𝑃32′) {1|0}, {3001
1

 
|0}, 𝑇{2100

 
 
|0} 

Spin space group (𝑃3001
2

63
𝑚1002𝑚01022221) 

{1||1|0}, {3001
1 ||3001

1
 
|0}, {m110||2110

 
 
|0}, 

{2243̅
 ||1|1/2, 0, 0}, {2423

 ||1|0, 1/2, 0} 
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S9. Sample dependence of single crystal CoxNb3S6 

S9.1. Single crystal X-ray diffraction refinements 

Single crystals of CoNb3S6 were grown using chemical vapor transport method. Through a large number of 

magnetotransport measurements, we found that there are at least four different CoxNb3S6 single crystals in the same 

batch with 0.92 ≤ 𝑥 ≤ 1, which exhibit a substantial anomalous Hall effect tunable by cobalt composition. The 

crystal structure of CoxNb3S6 was characterized using a Bruker D8 Quest diffractometer with Mo-K𝛼 radiation (𝜆𝜆 

= 0.71069 Å). The data integration and reduction were performed with the commercial Bruker APEX2 software 

suite. The refined lattice parameters and the atomic occupations for different samples are presented in Tables S5-

S12. 

Table S5. Single crystal X-ray diffraction refinement for sample1. 

Formula Co0.92Nb3S6 

Formula mass (g/mol) 525.11 

Crystal system Hexagonal 

Space group P6322 

a (Å) 5.7591(11) 

b (Å) 5.7591(11) 

c (Å) 11.8520(3) 

α 90˚ 

β 90˚ 

 120˚ 

V (Å3) 340.43(9) 

T (K) 100 

ρ(cal)(g/cm3) 5.125 

λ (Å) 0.71073 

F (000) 483.614 

Crystal size (mm3) 0.1 × 0.1 × 0.02 

μ (mm-1) 9.001 

Final R indices R1=6.45, ωR2=8.95 

R indices (all data) R1=6.69, ωR2=9.03 

Goodness of fit 5.14 

 

Table S6. Wyckoff positions, coordinates, occupancies, and equivalent isotropic displacement parameters for 

sample1. 

Atom Wyckoff site x y z Occupancy Ueq 

Co1 2c 0.333333 0.666667 0.25 0.152804 0.003413 

Nb1 2a 0 0 0 0.166667 0.002596 

Nb2 4f 0.666667 0.333333 0.001660 0.333333 0.002682 

S1 12i 0.332433 0.001140 0.131853 1 0.003157 
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Table S7. Single crystal X-ray diffraction refinement for sample2. 

Formula Co0.99Nb3S6 

Formula mass (g/mol) 529.51 

Crystal system Hexagonal 

Space group P6322 

a (Å) 5.7567(6) 

b (Å) 5.7567(6) 

c (Å) 11.8476(15) 

α 90˚ 

β 90˚ 

 120˚ 

V (Å3) 340.02(6) 

T (K) 100 

ρ(cal)(g/cm3) 5.174 

λ (Å) 0.71073 

F (000) 491.539 

Crystal size (mm3) 0.12 × 0.13 × 0.03 

μ (mm-1) 9.001 

Final R indices R1=4.21, ωR2=5.33 

R indices (all data) R1=4.63, ωR2=5.40 

Goodness of fit 2.70 

 

Table S8. Wyckoff positions, coordinates, occupancies, and equivalent isotropic displacement parameters for 

sample2. 

Atom Wyckoff site x y z Occupancy Ueq 

Co1 2c 0.333333 0.666667 0.25 0.165243 0.003942 

Nb1 2a 0 0 0 0.166667 0.002660 

Nb2 4f 0.666667 0.333333 0.001670 0.333333 0.002636 

S1 12i 0.332380 0.001080 0.367970 1 0.003290 
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Table S9. Single crystal X-ray diffraction refinement for sample3. 

Formula Co0.98Nb3S6 

Formula mass (g/mol) 528.76 

Crystal system Hexagonal 

Space group P6322 

a (Å) 5.7490(2) 

b (Å) 5.7490(2) 

c (Å) 11.8960(3) 

α 90˚ 

β 90˚ 

 120˚ 

V (Å3) 340.20(5) 

T (K) 100 

ρ(cal)(g/cm3) 5.164 

λ (Å) 0.71073 

F (000) 490.852 

Crystal size (mm3) 0.12 × 0.12 × 0.03 

μ (mm-1) 9.001 

Final R indices R1=1.76, ωR2=4.61 

R indices (all data) R1=1.91, ωR2=4.65 

Goodness of fit 3.52 

 

Table S10. Wyckoff positions, coordinates, occupancies, and equivalent isotropic displacement parameters for 

sample3. 

Atom Wyckoff site x y z Occupancy Ueq 

Co1 2c 0.333333 0.666667 0.25 0.163125 0.003250 

Nb1 2a 0 0 0 0.166667 0.002521 

Nb2 4f 0.666667 0.333333 0.001630 0.333333 0.002523 

S1 12i 0.332440 0.001140 0.36807 1 0.003313 
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Table S11. Single crystal X-ray diffraction refinement for sample4. 

Formula CoNb3S6 

Formula mass (g/mol) 530.1 

Crystal system Hexagonal 

Space group P6322 

a (Å) 5.7637(4) 

b (Å) 5.7637(4) 

c (Å) 11.8876(7) 

α 90˚ 

β 90˚ 

 120˚ 

V (Å3) 342.00(1) 

T (K) 100 

ρ(cal)(g/cm3) 5.150 

λ (Å) 0.71069 

F (000) 489.758 

Crystal size (mm3) 0.15 × 0.12 × 0.05 

μ (mm-1) 9.001 

Final R indices R1=2.31, ωR2=4.71 

R indices (all data) R1=2.46, ωR2=4.76 

Goodness of fit 3.59 

 

Table S12. Wyckoff positions, coordinates, occupancies, and equivalent isotropic displacement parameters for 

sample4. 

Atom Wyckoff site x y z Occupancy Ueq 

Co1 2c 0.333333 0.666667 0.25 0.166859 0.003231 

Nb1 2a 0 0 0 0.166667 0.001903 

Nb2 4f 0.666667 0.333333 0.001647 0.333333 0.001906 

S1 12i 0.332438 0.001157 0.131880 1 0.002675 

 

S9.2. Magnetotransport measurements for different samples 

The magnetotransport data of the above four samples are presented in Fig. S17. CoxNb3S6 undergo an 

antiferromagnetic phase transition at 𝑇𝑁 = 26.3 K  for 𝑥 = 0.92  (Fig. S17a), and four antiferromagnetic phase 

transitions at 𝑇𝑁1
= 28.2 K , 𝑇𝑁2

= 26.7 K , 𝑇𝑁3
= 24.9 K , 𝑇𝑁4

= 22.5 K  for 𝑥 = 0.99  (Fig. S17b). For both 

these two samples, there are no ferromagnetic components or AHE observed (as shown in Figs. S17e,f and Figs. 

S17i,j). Furthermore, our single crystal neutron diffraction experiment shows that Co0.92Nb3S6 (the sample without 

AHE) also shares same collinear magnetic structure (Γ4) with CoNb3S6, which illustrates that the collinear magnetic 

structure alone cannot explain the large AHE observed in CoNb3S6. (more details are presented in Fig. S6).  

As a comparison, weak ferromagnetic components and AHE appeared simultaneously in CoxNb3S6 with 𝑥 =
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0.98, 1.0 (as shown in Figs. S17g,h and Figs. S17k,l), which indicates that the weak ferromagnetic components play 

an important role to the AHE observed in CoxNb3S6. More importantly, such observation suggests that crystal Hall 

effect [8] mechanism is insufficient in elucidating the anomalous Hall effect observed in CoNb3S6. This is because 

crystal Hall effect would still exist given the ideal antiferromagnetic configuration (no magnetic canting). In the 

main text, we chose CoNb3S6 as the research object.  

 

Fig. S17. Magnetization and anomalous Hall effect measurements for different samples CoxNb3S6 with x = 0.92, 

0.99, 0.98, 1.0, respectively. a-d Temperature dependence of the magnetization measured at 𝐵 = 0.1 T with B//c 

for different samples. e-h Field dependence of the magnetization measured at different temperatures with B//c for 

different samples. i-l Hall effects measured at different samples with B//c. 

 

S10. The Fermi surface of triple-q CoNb3S6 

Recently, a triple-q (or noncoplanar) antiferromagnetic (AFM) has been proposed in CoNb3S6 [7]. Our Fermi 

surface results suggests that noncoplanar AFM may not the realistic magnetic structure of CoNb3S6. We compared 

the Fermi surfaces of noncoplanar magnetic structures with those observed through ARPES. Firstly, the noncoplanar 

AFM structure constitutes a 2 × 2 supercell compared with the nonmagnetic primitive cell (ARPES). The size of the 

Brillouin zone (BZ) corresponding to the noncoplanar AFM with different termination (The red hexagon shown in 

Fig. S18a,b) does not align with the size of ARPES Brillouin zone (The black hexagon shown in Fig. S18c). 

Additionally, the Fermi surface of noncoplanar AFM apparently fails to reproduce the ARPES Fermi surface (Fig. 

S18a-c) since no band-folding signature appears on the boundary of noncoplanar AFM Brillouin zone in ARPES 

data (Fig. S18c). Conversely, the Fermi surface of collinear AFM of CoNb3S6 demonstrates better agreement with 

the experimental results (Fig. S18c,d).  
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Fig. S18. Fermi surface of CoNb3S6. a,b DFT calculated Fermi surfaces with only surface state spectral weight for 

noncoplanar CoNb3S6 with different termination. c denotes the ARPES Fermi surface mapping and d DFT calculated 

Fermi surfaces with only surface state spectral weight based on collinear AFM order. The black arrow in c and d 

indicates the 𝛽 pocket. The black and red hexagon denotes the nonmagnetic surface BZ and noncoplanar AFM 

surface BZ, respectively. 
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