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A B S T R A C T   

Temperature-driven phase transition is a long-standing frontier in material science, among which the most 
common phenomenon is the transition from a low-temperature magnetic-ordered phase to a high-temperature 
paramagnetic phase. A paramount question is if such a paramagnetic phase of the “correlated solids” can be well 
described by single-particle band theory to facilitate the experimental observations. In this work, we investigate 
the electronic properties of the paramagnetic phase by the static density functional theory via two different 
approaches, namely monomorphous description and polymorphous description. In the conventional mono-
morphous description, the local spin moments are naively forced to be zero. By contrast, the polymorphous 
description based on a large enough supercell with disordered distributed local moments is able to count in the 
effects of distinct local environments, providing a more reliable paramagnetic electronic structure to simulate 
realistic materials. From a comparison of total energies, symmetries, and band structures, we demonstrate the 
necessity for a proper treatment of paramagnetic phases, taking MnBi2Te4 as an example. Our work provides a 
theoretical perspective on the evolution of electronic structures through magnetic order-disorder phase transi-
tions in emergent topological magnets.   

1. Introduction 

Time-reversal (T ) symmetry is known to play a primary role in the 
characteristics of topological phases of matter [1,2]. Its presence or 
absence is a bedrock for the classification and achievement of emergent 
quantum phenomena, such as quantum spin Hall (QSH) effect in a 
T -preserved topological insulator [3] and quantum anomalous Hall 
(QAH) effect in a T -broken Chern insulator [4]. In the past few years, 
experiment and theory have established elegant consistency in 
T -broken systems and unearthed a series of ordered magnetic topo-
logical insulators and Weyl semimetals with the long-range magnetic 
order [5–14]. However, a long-standing problem in density-functional 
theory (DFT) is how to deal with paramagnetic (PM) phases with dis-
ordered distributed local moments, where T is globally preserved due 
to macroscopically zero net spin moments but locally broken around 
the magnetic ions [15]. 

Before reviewing this problem, it should be noted that the evolution 
of the electronic band structure with temperature provides direct evi-
dence of magnetism-induced topological phase transitions. For in-
stance, the surface gap of a magnetic topological insulator is the 

prerequisite for realizing the QAH effect and axion response [16]. Such 
a gap originates from magnetism (rather than other effects such as 
Coulomb scattering [17]) only if it disappears with temperature T past 
the critical temperatures TC or TN [8]. Another expected possible sce-
nario is in magnetic Weyl semimetal, whether two Weyl points merge to 
a Dirac point or are gapped to an insulator [18]. Observing these 
electronic fine changes cannot be done by solely tracing any “kinks” in 
other order parameters, such as heat capacity C(T) or susceptibility 
χ(T). 

Conventionally, the PM phase from first-principles calculations is 
done by simply forcing the local moment of each magnetic atom (e.g., 
transition-metal atom) to be homogenously zero for a macroscopic 
statistical behavior, namely a nonmagnetic (NM) monomorphous de-
scription [6,19–22]. In other words, the magnetic cations are sym-
metry-equivalent and share an identical local environment. Although 
such an approximation yields reasonable results in some scenarios, it 
usually leads to severe discrepancies with the physical reality and ex-
periments. One may note that a broad range of Mott insulators and 
perovskites with 3d electrons have been reported to maintain their 
bandgap in both low-T and high-T phases, but however, these 
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compounds exhibit false-positive metallic states under the NM mono-
morphous calculations [23–27]. As a result, the mean-field DFT was 
once claimed to be insufficient for describing the correlated PM phases. 

Indeed, when the local moments of the magnetic atoms are ran-
domly aligned at T  >  TC, the resultant PM phase has an ensemble- 
averaged property 〈P(Si)〉 (e.g., band structure) from numerous random 
magnetic configurations Si. By contrast, the monomorphous approach, 
i.e. the NM model within a single minimal primitive cell, yields a 
property P(〈Si〉) of artificially averaged magnetic structure 〈Si〉 at each 
atomic site [26,15,28]. Consequently, spurious T symmetry (both 
globally and locally) and crystalline symmetries lead to artificial results 
such as partial filling of bands and thus problematic predictions of the 
wavefunctions as well as the topological properties. 

This article attempts to answer a simple yet undeniable question: How to 
identify the magnetic order−disorder phase transition directly from DFT- 
calculated band structures? We address it by applying the state-of-the-art 
polymorphous description to offer a prediction for the bulk and thin films. 
The rest of the paper is organized as follows. Section 2 provides the 
methodology adopted and computational details. In Section 3, the intrinsic 
magnetic topological insulator MnBi2Te4 is taken as a typical example. 
Through the polymorphous calculations, we find exclusive advantages of 
this method in describing the band structure and total energy, which is well 
consistent with the previous experiments. Our results establish an important 
routine for capturing the transition signals, in order to compare with angle- 
resolved photoemission spectroscopy (ARPES) and scanning tunneling mi-
croscope (STM) measurements. 

2. Methods 

Our DFT calculations are carried out by using the projector aug-
mented-wave (PAW) method, implemented in Vienna ab-initio 
Simulation Package (VASP) [29–31]. The Perdew-Burke-Ernzerhof 
(PBE) type exchange-correlation functional in the generalized gradient 
approximation (GGA) [32] is adapted to take into account exchange 
and correlation contributions to the Hamiltonian of the electron-elec-
tron system. Since the on-site Coulomb interactions among electrons on 
Mn-3d are strong, we have taken U = 5.0 eV as a parameter in the 
GGA+U calculations [33]. We apply the DFT-D3 approach [34] to 
describe the van der Waals interactions. To account for the effect of 
fluctuated magnetic moments on the total energy, the coordinates of 
the atoms are optimized (only for the bulk). Energy cost as a function of 
magnetic moment is performed via the constrained density functional 
theory (CDFT) [35]. In order to obtain an intuitive electronic spectrum 
rather than confused heavily folded bands, we apply a rigorous band 
unfolding [36,37] to obtain an effective band structure (EBS) in a pri-
mitive Brillouin zone, 

=P k K m k n( ) ,K m i n i
2

(1) 

where K m and k n are the eigenvectors of the supercell and primitive 
cell. K m can be expressed as a linear combination of primitive cell 
eigenvectors k ni . The spectral weight is given by 

=A k n E P k E E( , ) ( ) ( ).i m K m i m (2) 

This process is implemented in the open-source code BANDUP [38,39]. 
We next introduce how to polymorphously simulate the disordered 

PM phase by applying the “special quasirandom structures” (SQSs) 
method [40]. Instead of averaging the band structures of many PM 
snapshot configurations {Si}, which belongs to another form of poly-
morphous description but is clumsy and inefficient, we construct a 
single but large enough supercell that takes into account the individual 
local moments as well as the local disordered effects. It provides more 
reliable results than the ensemble average along many small random 
supercells. From statistical mechanics, the guidelines for picking the 
desired supercell are as follows. 

2.1. Multisite correlation function 

We first define a configuration Si represented by a vector of occu-
pation variables Sj

i, indicating which type of atom sits on lattice site j. In 
a multi-component system (e.g. alloy), Mj distinct chemical species can 
be assigned to occupy site j (denoted as =S M0, , 1j

i
j due to its 

chemical composition). In most cases, the PM phase can be approxi-
mately treated as a binary alloy with two species: spin-up and spin- 
down. The reasons will be clarified later. We also need to define the 
“cluster” ακ,ξ to characterize the κ-order arrangement of ξth-nearest 
neighbor atoms, e.g. points α1, lines α2, triangles α3. For simplicity, ξ is 
omitted hereafter. 

For a given configuration S, the multisite correlation function of a 
specific cluster ακ is given by 

=S S( ) ( ).
i i (3) 

In a binary alloy, a common choice of γ is γ(0) = +1 and γ(1) = −1. If 
we only consider κ = 2, it is the Ising model. 

The correlation of the whole system is expressed as 

= D m( ) ( ) ,
(4) 

where ( ) sums over all the clusters which are symmetry 
equivalent to ακ. mα is the number of clusters . Dα is cluster expansion 
coefficients or cluster interaction potential. In the fully disordered PM 
phase with complete stochasticity, the correlation function is zero 
ρα(S*) = 0. To search for a supercell with a minimum correlation ap-
proaching ρα(S*), we apply a Monte-Carlo method MCSQS implemented 
in Alloy Theoretic Automated Toolkit (ATAT) [41,42]. In this paper, the 
cutoff radii ξ of pair correlation (κ = 2) and triplet correlation (κ = 3) 
clusters are set between the second and third nearest neighbors. 

2.2. Spin orientation 

In the language of the classical Heisenberg model, at low tempera-
tures, the magnetic moments interact with each other through (direct or 
super-) exchange interaction and tend to align parallel (ferromagnetic, 
FM) or antiparallel (antiferromagnetic, AFM) to reach the lower-energy 
ground state, expressed as [22] 

= =H J J nˆ
i j ij i j, (5) 

where = N i j i j
1

, is the average spin-spin correlation of a 
given type of cluster α. Jα and nα denote the coupling constant and the 
number of atoms. Consider a one-dimensional Ising model, the energies 
of the FM and AFM phases satisfy EFM = −EAFM = −∑αJα. Because the 
averaged correlation function should fulfill 〈Φα〉 = 0, ∀ α in the dis-
ordered PM phase, EPM = 0 is consistent with the requirement 2.1. 

〈Φα〉 = 0 is quite helpful for making an approximation. Although 
the magnetic moments are 360∘ randomly aligned in real PM phases, we 
can still assume collinear spin configurations in calculations, as long as 
the parallel and antiparallel interactions are canceled when summing 
over clusters. The choice of the easy axis depends on the crystalline 
symmetries and may require testing. For example, van der Waals 
magnets usually exhibit large magnetic anisotropy energy (MAE), so 
their spin moment orientations can be initially set along the easy axis, 
and the amplitudes are free to evolve during the relaxation (flipping 
disallowed). But in certain scenarios (e.g. Mn3Sn has a noncollinear but 
coplanar order [43]), we can adopt three (or more) in-plane directions 
as input to generate SQSs. 

2.3. Central limit theorem (CLT) 

A basic intuitive understanding behind the PM phase is that there 
could exist multiple local environments rather than a single environ-
ment (e.g. a cation can be surrounded by n↑ spin-up ions plus n↓ spin- 
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down ions, but n↑,↓ can differ at different sites). If we draw out a fixed- 
size supercell sample i randomly from a real PM phase and count the 
number of cations that are surrounded by (n↑∕↓ = 0, 1, 2, 3, … ), we will 
have a distribution Fi(n↑∕↓), representing the probability of finding an 
ion with n↑∕↓. Repeating this independent and identically distributed 
(i.i.d.) process, we can have 

m
F n µ mlim 1 ( ) ( , )

m i

m
i

2N (6) 

where the right side µ m( , )2N is a normal distribution with the 
mean value μ = 0.5. The finite variance of the real PM phase is set as σ2. 
In density functional theory, it is inevitable to introduce spurious spa-
tial correlations by periodic structures, but CLT hints at an underlying 
principle that, the supercell with a normal distribution of F(n↑∕↓) is 
optimal by technically minimizing the periodic errors. An example will 
be given in the next section (Fig. 1). 

3. Results 

In this section, we will employ a comparative study with different 
descriptions on MnBi2Te4, which has received much attention recently  
[7,8,11,12,16,28]. This is the simplest example of a false-positive metal 
under the NM monomorphous method, enforced by an odd number of 
electrons within a unit cell and Kramers spin degeneracy. 

As shown in Fig. 2(a), MnBi2Te4 crystalized in a van der Waals 
structure (space group R3̄m) with a MnTe layer sandwiched by a 
quintuple layer (QL) Bi2Te3, forming a septuple layer (SL). At low 
temperatures, MnBi2Te4 exhibits an AFM ground state, where spin 
moments in each SL are FM coupled and point out of planes. With spin- 
orbit coupling effect induced band inversion, the system is a 2 AFM TI 
with gapped (001) surface states. In the two-dimensional thin films, the 
system is predicted to show alternating behaviors between the QAH 
(odd number of SLs) and axion insulator states (even number of SLs)  
[11]. However, the (001) surface states, which should be gapped by 

Fig. 1. The spin configuration and corresponding projected local density of states (PDOS) in MnBi2Te4. (a)–(d) Upper panel: The weight of local spin configuration F 
(n↑↓) in different spin configurations. (a) All the metal sites are identical for zero spins. (b) and (d) The spins of nearest neighbor cations in a layer, keep the same 
direction in the FM and A-type AFM phases (n↑↓ = 0 everywhere). (c) Distribution of the weights of local spin configurations in the PM supercell modeled by the 224- 
atom SQS shown in the inset (only the Manganese sites are shown). The bars describe the percentage of nearby opposite-spin sites when the central atom is spin-up 
(green) and spin-down (coral). (e)–(j) Lower panel: The d-orbitals PDOS of the manganese atom in the upper panel, respectively. (e) The NM model with a single atom 
in a unit cell induces a metallic gapless phase. (g)–(i) In the PM-SQS structure, the magnitude of moments in different local environments varies in a small range, and 
there is no accidental band gap closure for each individual atom. The inset shows the central atom’s environment corresponding to n↑ = 5, 3, 2 (n↓ = 1, 3, 4). (f) and 
(j) FM and AFM motifs. 
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magnetism, is experimentally observed to be gapless in the low-T AFM 
phase. This unresolved issue hinders the observation of the AFM-PM 
phase transitions. 

In the high-T PM phase, MnBi2Te4 is expected to share many simi-
larities as Bi2Te3. A naive but intuitive physical picture is as follows. 
Three-dimensional MnBi2Te4 will restore to a T -preserved 2 TI with 
the gapless (001) surface states. In the thin film, a low-T QAH insulator 
is expected to be a QSH insulator or a trivial insulator in the high-T 
limit [44]. Luckily, ARPES measurement found the temperature-de-
pendent transition signal, albeit rather less salient. The (001) surface 
states kept gapless in both the AFM and PM phases, and the bulk gap 
was unchanged [7]. However, it was clearly shown that the two con-
duction bulk bands merged into one band at some specific k path. 

3.1. Bulk 

The NM monomorphous approach, i.e. , the magnetic moment of Mn 
is set to zero within a primitive cell, is first considered to obtain the PM 
electronic structure of MnBi2Te4 (Fig. 1(a,e)). The unit cell consists of 
one SL that contains a single Mn atom. Guaranteed by space-time PT

symmetry, each energy band is at least double-degenerate (Fig. 2(b)). 
Note that a single Mn atom has five 3d electrons, so the total number of 
electrons within a primitive cell is odd. This indicates that the Fermi 
level must cut through at least one band, rendering a symmetry-en-
forced semimetal. Such a semimetal phase cannot be avoided by simply 
doubling the primitive cell, because it would fold each band at the 
boundary of the reduced Brillouin zone (BZ) rather than open a gap 
(Appendix Fig. A1(a)). Additionally, even if inversion symmetry is 
broken, it still exhibits a semimetal for Kramers degeneracy at time- 
reversal invariant wavevectors. Therefore, the oversimplified NM 
monomorphous model fails to predict the correct PM electronic struc-
ture of MnBi2Te4 due to the spurious high symmetry. 

In the earlier DFT studies [45], the PM phase has also been naively 
treated as an AFM or FM phase (since the PM phase is composed of 
numerous microscopic AFM and FM configurations), which breaks not 
only the local T symmetry but also the global T symmetry. From the 
viewpoint of the distribution of spin configurations F(n↑∕↓) (the nearest 
neighbor shell), they could also be classified as monomorphous 

descriptions for identical local environments. The nearest neighbor sites 
of all cations have the maximum spin-similarity, i.e. , F(n↑∕↓ = 0) = 1 
that disobeys CLT. While the false-positive metallic prediction is 
avoided under the AFM/FM configuration (Fig. 1(f,j)), some char-
acteristics of the band structure are significantly different from those in 
the real PM phase, as we discuss next. 

In the polymorphous framework, the PM band structure can be ac-
commodated by building a 4×4×2 SQS supercell (224 atoms), where local 
moments are randomly distributed (inset of Fig. 1(c)). The distribution of 
spin configurations F(n↑∕↓) (the nearest neighbor shell) satisfies CLT. Strictly 
speaking, all the original space group symmetries cannot survive. We also 
check that any unnecessary microscopic translational symmetry imposed by 
the supercell is avoided. In Fig. 1(g–i), each individual Mn2+ motif provides 
a finite band gap, rendering an overall bulk insulating phase. This is the 
most significant improvement compared to the NM monomorphous ap-
proach, consistent with ARPES measurements. 

Fig. 2(e) shows the DFT-calculated spectral functions in the SQS, 
which are unfolded into the BZ of a 1×1×2 cell in order to directly 
compare with the AFM bandstructure (Fig. 2(d)). The fuzziness of the 
spectral density in the long-wave vector region reflects the degree of 
retention of crystalline symmetry. At a glance of the dispersion and gap, 
the energy band looks very similar to that of the AFM ground state. The 
energy gap size is nearly the same at Γ (∼0.18 eV). Since ARPES did not 
observe any band gap closing and reopening, one may ask if this system 
is still topologically nontrivial. Although in this case any symmetry- 
based indicators cannot be defined, band inversion is a rough way to 
address this question. In Appendix Fig. A2, we show the valence and 
conduction band weights (p orbitals of Bi and Te) at Γ are also inverted 
in the PM phase. Thus, the PM phase of MnBi2Te4 belongs to a globally 
T -preserved “topological insulator” [7]. 

The evidence of the transition from the low-T AFM to high-T PM is 
reported to be two conduction bands merging at Z (0,0,0.5) [7]. This 
merging effect leads to a four-fold degeneracy, which is captured by our 
polymorphous calculations. The reason behind it is physically insightful. 
The PM-SQS can be regarded as a composition of the amount of the AFM 
and FM 1×1×2 unit cells. However, in the AFM and FM phases, no such 
nonsymmorphic symmetry exists to protect band crossings at Z (Fig. 2(c,d)). 
In the mesoscopic scale of the PM phase, the translation, rotation, and T

Fig. 2. (a) Crystal structure of Bi2Te3 and MnBi2Te4 with an A-type AFM configuration. (b)–(d) Band dispersions of the (b) NM, (c) FM, and (d) AFM configurations. 
For the calculations of NM and FM phases, we use a single SL which causes double Brilliouin zone length along Γ−Z. (e) The spectral functions of the PM phase by the 
polymorphous description with randomly distributed local moments. The spin-orbit coupling is included. (f) Total energy as a function of constrained local moments 
with an AFM configuration. A polynomial function is used to fit the total energy evolution. 
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symmetries are recovered, but ARPES still detects the 1×1×2 cell because 
of the presence of the local moments. Hence, this band merging phenom-
enon originates from the band folding effect at the BZ boundary when the 
system turns to the PM phase. 

It is also known that the calculated energy difference reflects the sta-
bility of the phase or magnetic interactions [46]. The energy of the PM-SQS 
is only 4.83 meV/Mn higher than that of the AFM ground state and 
2.48 meV/Mn higher than that of the FM phase. To some extent, it corre-
sponds to a low Néel temperature (TN ≈ 25 K). In sharp contrast, the total 
energy of the NM monomorphous phase (4.5 eV/Mn) is around 1000 times 
higher than that of the polymorphous one, which apparently deviates from 
physical reality. The inevitable omission of the Zeeman splitting of Mn 
atoms leads to such a huge difference, revealed by a CDFT calculation 
(Fig. 2(f)). When decreasing the magnitude of local moments under the 
AFM configuration, the total energy increases gradually. A jump occurs at ∣s∣ 
= 0 μB (NM case) because PT symmetry-enforced half-filling further lifts 
the band to Fermi level. To sum up, our results indicate the validity of the 
PM-SQS configurations when describing bulk states. 

3.2. Thin film 

Next we focus on the thin films of MnBi2Te4. For each structure 
considered in Fig. 3, we build a 4×4 SQS and unfold it back to the unit 
cell for simulating the PM phase. According to the Dirac equation, 
magnetization-induced T -broken mass term will open a gap. However, 
the hybridization between top and bottom surfaces is also capable of 
gap opening. The polymorphous view is helpful in diagnosing the gap- 
opening mechanism. 

On the other hand, when increasing the number of QLs/SLs, in Bi2Te3, 
there exists an oscillation behavior between the trivial insulator and the 
QSH insulator [44,47]; in MnBi2Te4, there exists an oscillation behavior 
between the axion insulator and the QAH insulator [11]. Although these 
terminologies are ill-defined in the PM phase, the polymorphous band 
structure can provide a basic picture of these properties. 

From 1 SL to 3 SLs, the band structures of the AFM and PM phases are 
shown in Fig. 3(a–c, e–g). In 1 SL, the finite-size effect overwhelms the 
magnetization, so both phases show a large gap of around 0.4 eV. Upon 
increasing thickness up to 2 SLs, the AFM order is built with PT symmetry. 

With less hybridization, two-SL-MnBi2Te4 yields an axion insulator state 
with zero Hall plateau [11]. In comparison, the general energy spectra of 
the PM phase differ from those of the AFM phase with a much smaller 
energy gap of 32 meV. In 3 SLs, the AFM phase shows the QAH effect with a 
74 meV gap, while the PM phase shows a gap of nearly 9 meV. Starting from 
2 SLs, we could expect that the band gap of the PM phase keeps decreasing 
but without vanishing, analogous to its NM counterpart [44]. 

Note that MnBi2Te4 is a vdW compound, which enables a series of 
assembling structures with Bi2Te3. Thus, we also investigate an SL-QL- 
QL thin film. In the ground state (Fig. 3(d)), the previous studies have 
shown via the layer projection of the wave function that the energy gap 
at Γ at E − EF = 0.02 eV, 0 eV, and −0.1 eV have different physical 
origins [48–50]. To be concrete, the gap at 0.02 eV [between the lowest 
conduction band and the second lowest conduction band] arises from 
the bottom SL and is associated with the magnetic exchange effect that 
breaks T symmetry and lifts the degeneracy; the gap at 0 eV is caused 
by the finite size effect. When the slab is thick enough, the hybridiza-
tion between the top and bottom surface states is negligible, and the 
gap will vanish; the energy bands near −0.1 eV [the first two highest 
conduction bands] are dominant by the top NM QL, which approxi-
mately retains T symmetry because of the vanishingly small prox-
imation effect. While the inversion symmetry is broken, this gapless 
Dirac point is still permitted but buried in the bulk valence bands. 
Hence, when the system turns to the PM phase [Fig. 3(h)], we find that 
only the gap at 0.02 eV closes while the latter two are essentially irre-
levant to the magnetization, so they keep gapless/gapped. Our results 
reflect how the magnetic disorder restores the global T symmetry and 
then affects the gap. 

4. Discussion and conclusion 

So far, we have analyzed the insulating system where each unit cell 
contains an odd number of electrons. One may ask if such a false-po-
sitive metallic prediction can be avoided in a system with an even 
number of electrons, so that the low-energy bands near the Fermi sur-
face are guaranteed to be correct by the monomorphous description. It 
is accidentally true except in cases when crystalline symmetry plays a 
role. When the space group has a nonsymmorphic symmetry to 

Fig. 3. (a–d) Calculated band structures of the thin film 1 SL, 2SL, 3SL, and SL-2QL, respectively. The AFM ground state is assumed. The 3SL is a QAH insulator. (e–h) 
Band structures in the PM phase. Spectral weights are shown as the size of blue dots. 
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accommodate the four-fold degeneracy, the system with 4n+2 elec-
trons is again inevitably in a metallic state under the monomorphous 
description. 

In summary, we comprehensively investigated the PM electronic 
structure of bulk (3D) and thin films (2D) of topological insulators, 
exemplified by MnBi2Te4. First, we found a band merging effect at the 
BZ boundary with negligible change in the bulk gap. Second, the sur-
face gap opened by magnetization will vanish in the PM configuration 
while the hybridization gap does not change. It is worth noting that an 
open question regarding 1D edge states is left here, which may provide 
ingredients for the study of topological Anderson insulators [51]. 

In the framework of single-particle mean-field DFT, performing the 
calculations with oversimplified approximation usually leads to un-
realistic predictions, especially when the local disorder effect needs to 
be considered. In magnetic semiconductors where the local moments 
survive and distribute disorderly, a polymorphous description is re-
quired. Such an approach takes into account the otherwise neglected 
local symmetry breaking, as well as the correct exchange interaction. 
Our work provides a guiding principle to analyze the underlying phy-
sical properties of the PM phases, which will facilitate the investigation 
of the magnetic phase transition and topological magnets. 
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Appendix A. Convergence test of the supercell size 

To rule out other possibilities of the band spectra, we also implement the calculations under different sizes of supercells with randomly dis-
tributed spin moments. There are three aspects to judge the convergence: band gap, dispersion, and degeneracy at high symmetry points. As shown 
in Fig. A1(a), the energy bands under the NM monomorphous description are double-degenerate at the Brillouin zone boundary (Z and L). In 

Fig. A1. (a) Band structure under the monomorphous description. (b) Band structures under the polymorphous description by different size supercells, unfolded to a 
1×1×2 cell. 
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principle, it can be used to judge the convergence of the supercell since two descriptions exhibit the same global symmetries. In Fig. A1(b), the band 
dispersion and unvanished gap obtained from other supercell sizes are close to the 4×4×2 one (Fig. 2(e)). The band degeneracy at Z point is quite 
robust, but the energy near F and L depends on the choice of the supercell. 

To be concrete, while the 2×1×2 cell accidentally achieves the degeneracy at L, the 2×2×2 and 2×2×4 cells fail to show that. Besides, the 
bands near F are evident to show the importance of the supercell size on the ab plane. Among them, only the 2×3×2 and 4×4×2 supercells are 
satisfactory for the dispersion near the F point.  
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